Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(11): 829, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36161366

RESUMEN

Industrial wastewater, domestic wastewater, and stormwater are the three entry points for microplastics (MP) in wastewater treatment plants. Extreme weather conditions, such as rising temperatures and heavy rainfall caused by climate change, can alter the rate at which MP enters wastewater treatment plants. In this study, wastewater and sludge samples from different treatment stages were collected during a 12-month sampling campaign (seasonal) to determine the efficiency of a municipal wastewater treatment plant in removing microplastic particles. MP ranging from 20 to 1000 µm were detected and classified by shape, color, size, and chemical composition. All samples contained MP particles, with concentration ranging from 1964 ± 50-2982 ± 54 MP/L in influent to 744 ± 13-1244 ± 21 MP/L in effluent and 91.1 ± 8-61.9 ± 5 MP/g in sludge; 71.6-90.1% identified particles were fragment-type with black, white, and transparent colors. Most of the microplastic particles were removed in the activated sludge tank, while the average removal rate in the wastewater treatment plant was 57%. The total concentration of MP was 27% higher in spring than in other seasons. The most common microplastic particles were polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP). These results demonstrate the value of long-term monitoring and MP quantification, which would provide a more accurate estimate of MP pollution from wastewater treatment plants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Lituania , Plásticos/análisis , Tereftalatos Polietilenos , Polipropilenos/análisis , Poliestirenos/análisis , Estaciones del Año , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
2.
Environ Res ; 207: 112218, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655608

RESUMEN

This study investigates potential influence of urban trees on black carbon (BC) removal by Norway spruce and silver birch along with the BC formation, mass concentration in air, and source apportionment. The main sources of BC in urban areas are transport, household and industry. BC concentrations monitored in urban background station in Vilnius (Lithuania) showed that biomass burning was a significant contributor to BC emissions even during warm period of the year. Therefore, BC emission levels were determined for the most common biomass fuels (mixed wood pellets, oak, ash, birch and spruce firewood) and two types of agro-biomass (triticale and rapeseed straw pellets) burned in modern and old heating systems. The highest emissions were obtained for biomass fuels especially birch firewood. BC aerosol particles produced by the condensation mechanism during the combustion processes were found in all samples taken from the leaf surface. The short-term effect of BC exposure on photosynthetic pigments (chlorophyll a and b; and carotenoids) in the foliage of one-year-old Norway spruce and silver birch seedlings was evaluated by the experiment carried out in the phytotron greenhouse. The seedlings showed different short-term responses to BC exposure. All treatments applied in the phytotron greenhouse resulted in lower chlorophyll content in spruce foliage compared to natural conditions but not differed for birch seedlings. However, the exposure of BC particles on the spruce and birch seedlings in the phytotron increased the content of photosynthetic pigments compared to the control seedlings in the phytotron. Overall, urban trees can help improve air quality by reducing BC levels through dry deposition on tree foliage, and needle-like trees are more efficient than broad-leaved trees in capturing BC. Nevertheless, a further study could assess the longer-term effects of BC particles on tree biochemical and chemical reactions.


Asunto(s)
Contaminantes Atmosféricos , Picea , Contaminantes Atmosféricos/análisis , Betula , Carbono/análisis , Clorofila A , Hollín
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA