RESUMEN
BACKGROUND: Symphylids (Hanseniella sp.) are polyphagous soilborne parasites. Today, symphylid populations on pineapple are monitored by observing root symptoms and the presence of symphylids at the bottom of basal leaves. The authors developed a reliable method with a bait and trap device to monitor symphylid populations in pineapple or fallow crops. The spatial distribution of the symphylid populations was evaluated using the variance/mean ratios and spatial analyses based on Moran's and Geary's indices. The method has been tested to monitor symphylid populations at different developmental stages of pineapple. RESULTS: Adding potato baits to the soil samples increased the trapping efficiency of symphylids when compared with 'soil only' and 'bait only' methods. The handling of the samples is also facilitated by the new device. Results showed that the vertical distribution of symphylids may be uniform deeply inside the soil profile under pineapple, up to 50 cm. Results showed that symphylid populations are highly aggregated, showing a spot area about 4-6 m wide for their development. CONCLUSION: The new method allows better and easier evaluation of symphylid populations. It may be very useful in the evaluation of new IPM methods to control symphylids under pineapple.
Asunto(s)
Ananas/parasitología , Artrópodos/crecimiento & desarrollo , Enfermedades de las Plantas/parasitología , Patología de Plantas , Suelo/parasitología , Ananas/crecimiento & desarrollo , AnimalesRESUMEN
Pineapple internal browning (IB) is a chilling injury that produces enzymatic browning associated with flesh translucency. Pineapple biodiversity allowed the investigation of how polyphenol oxidase (PPO) and peroxidase (POD) activities with their different isoforms are involved in the IB mechanism. Fruits of four varieties that expressed IB symptoms differently, Smooth Cayenne (SCay) and the hybrids MD2, Flhoran 41 (Flh 41), and Flhoran 53 (Flh 53), were stressed by cold. The susceptible varieties showed classical brown spots but different patterns of IB, whereas MD2 and controls showed no IB. Enzymatic activities were measured on fruit protein extracts and PPO and POD isoforms separated on mini-gels (PhastSystem). Only PPO activity was significantly enhanced in the presence of IB. Up to six PPO isoforms were identified in the susceptible varieties. PPO was barely detectable in the nonsusceptible variety MD2 and in controls. The number of PPO isoforms and the total PPO activity after chilling are varietal characteristics.