Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 155: 111171, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32469781

RESUMEN

The prevalence of antibiotic-resistant Salmonella spp. in the source waters of shrimp farms in the Nagapattinam region of South India was investigated. Water and sediment samples (188 Nos.) collected from 23 natural creeks during December 2018 to April 2019 were examined for Salmonella spp. by conventional and PCR methods. The study indicated 28.7% of water and 25.5% of sediment isolates as Salmonella spp., while PCR test gave positive for 7.44% and 5.15% of the isolates, respectively. The isolates were resistant to sulfonamide (SF), but sensitive to tetracycline (TC), chloramphenicol (CAP), and furazolidone (FZ). PCR amplification of mitochondrial 16S rRNA region identified the highly resistant Salmonella serovar as S. Montevideo, which is an emerging food-borne pathogen. The incidence of antibiotic-resistant S. Montevideo reported for the first time in the natural creeks that supply water for shrimp farms emphasizes the need for regulatory steps to control its prevalence.


Asunto(s)
Antibacterianos , Salmonella , Acuicultura , India , Pruebas de Sensibilidad Microbiana , Prevalencia , ARN Ribosómico 16S
2.
Anal Chim Acta ; 648(2): 183-93, 2009 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-19646583

RESUMEN

Liquid-phase microextraction (LPME) has been investigated for trace analysis in the present work in conjunction with fibre-optic-based micro-spectrophotometry which accommodates sample volume of 1 microL placed between the two ends of optical fibres. Methods have been evolved for the determination of (i) 1-100 microM and 0.5-20 microM of thiols by single drop microextraction (SDME) and LPME in 25 microL of the organic solvent, respectively, involving their reaction with the Ellman reagent and ion pair microextraction of thiolate ion formed; (ii) 70 microg to 7 mg L(-1) of chlorine/chlorine dioxide by headspace in-drop reaction with alternative reagents, viz., mixed phenylhydrazine-4-sulphonic acid and N-(1-naphthyl)ethylenediamine dihydrochloride, o-dianisidine, o-tolidine, and N,N-diethyl-p-phenylenediamine; (iii) 0.2-4 mg L(-1) of ammonia by reaction with 2,4-dinitro-1-fluorobenzene to give 2,4-dinitroaniline which was diazotized and coupled with 1-naphthylamine, the resulting dye was subjected to preconcentration by solid-phase extraction and LPME; and (iv) 25-750 microg L(-1) of iodide/total iodine by oxidation of iodide by 2-iodosobenzoate, microextraction of iodine in organic solvent, and re-extraction into aqueous starch-iodide reagent drop held in the organic phase. LPME using 25-30 microL of organic solvent was found to produce more sensitive results than SDME. The cuvetteless spectrophotometry as used in combination with sample handling techniques produced limits of detection of analytes which were better than obtained by previously reported spectrophotometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA