Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321318

RESUMEN

Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus, affording the possible availability of new drug targets that can be used for therapeutic intervention.IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to infection, effectively restricts the replication of several flaviviruses, but the exact molecular mechanisms have not been elucidated. Here we have identified a novel mechanism employed by viperin to inhibit the replication of two flaviviruses: tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin induced selective degradation via the proteasome of TBEV and ZIKV nonstructural 3 (NS3) protein, which is involved in several steps of the viral life cycle. Furthermore, viperin also reduced the stability of several other viral proteins in a NS3-dependent manner, suggesting a central role of NS3 in viperin's antiflavivirus activity. Taking the results together, our work shows important similarities and differences among the members of the genus Flavivirus and could lead to the possibility of therapeutic intervention.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Regulación de la Expresión Génica , Inmunidad Innata , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Virus Zika/fisiología , Células HEK293 , Células HeLa , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Complejo de la Endopetidasa Proteasomal/genética , Proteínas/genética , Proteínas/inmunología , ARN Helicasas/genética , ARN Helicasas/inmunología , ARN Helicasas/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
3.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046456

RESUMEN

Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. We describe here a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly and involves release of malfunctioning membrane-associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad-spectrum antiviral interferon-stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) as the cellular protein targeted by viperin. Viperin-induced antiviral activity, as well as C-particle release, was stimulated by GBF1 inhibition and knockdown and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive noninfectious virus particles via a GBF1-dependent mechanism. This as-yet-undescribed antiviral mechanism allows potential therapeutic intervention.IMPORTANCE The interferon response can target viral infection on almost every level; however, very little is known about the interference of flavivirus assembly. We show here that interferon, through the action of viperin, can disturb the assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appears to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study, we show that viperin induces capsid particle release by interacting and inhibiting the function of the cellular protein Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and is essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target.


Asunto(s)
Infecciones por Flavivirus/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interferón Tipo I/farmacología , Proteínas/metabolismo , Células A549 , Animales , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Flavivirus/efectos de los fármacos , Flavivirus/patogenicidad , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Células HeLa , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Células Vero , Virulencia , Ensamble de Virus/efectos de los fármacos
4.
Nat Commun ; 7: 11314, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27066907

RESUMEN

FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.


Asunto(s)
Antiinflamatorios/metabolismo , Colitis/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Colitis/genética , Colitis/patología , Sulfato de Dextran , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fagocitosis/efectos de los fármacos , Proteínas/química , Proteínas/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA