Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000928

RESUMEN

In this paper, we present a bolt preload monitoring system, including the system architecture and algorithms. We show how Finite Element Method (FEM) simulations aided the design and how we processed signals to achieve experimental validation. The preload is measured using a Piezoelectric Micromachined Ultrasonic Transducer (PMUT) in pulse-echo mode, by detecting the Change in Time-of-Flight (CTOF) of the acoustic wave generated by the PMUT, between no-load and load conditions. We performed FEM simulations to analyze the wave propagation inside the bolt and understand the effect of different configurations and parameters, such as transducer bandwidth, transducer position (head/tip), presence or absence of threads, as well as the frequency of the acoustic waves. In order to couple the PMUT to the bolt, a novel assembly process involving the deposition of an elastomeric acoustic impedance matching layer was developed. We achieved, for the first time with PMUTs, an experimental measure of bolt preload from the CTOF, with a good signal-to-noise ratio. Due to its low cost and small size, this system has great potential for use in the field for continuous monitoring throughout the operative life of the bolt.

2.
Opt Express ; 32(10): 17689-17703, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858945

RESUMEN

Broadband low-resolution near-infrared spectrographs in a compact form are crucial for ground- and space-based astronomy and other fields of sensing. Astronomical spectroscopy poses stringent requirements including high efficiency, broad band operation (> 300 nm), and in some cases, polarization insensitivity. We present and compare experimental results from the design, fabrication, and characterization of broadband (1200 - 1650 nm) arrayed waveguide grating (AWG) spectrographs built using the two most promising low-loss platforms - Si3N4 (rectangular waveguides) and doped-SiO2 (square waveguides). These AWGs have a resolving power (λ/Δλ) of ∼200, free spectral range of ∼ 200-350 nm, and a small footprint of ∼ 50-100 mm2. The peak overall (fiber-chip-fiber) efficiency of the doped-SiO2 AWG was ∼ 79% (1 dB), and it exhibited a negligible polarization-dependent shift compared to the channel spacing. For Si3N4 AWGs, the peak overall efficiency in TE mode was ∼ 50% (3 dB), and the main loss component was found to be fiber-to-chip coupling losses. These broadband AWGs are key to enabling compact integrations such as multi-object spectrographs or dispersion back-ends for other astrophotonic devices such as photonic lanterns or nulling interferometers.

3.
Micromachines (Basel) ; 14(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36838011

RESUMEN

Micro-electro-mechanical systems (MEMS) have enabled new techniques for the miniaturization of sensors suitable for Structural Health Monitoring (SHM) applications. In this study, MEMS-based sensors, specifically Piezoelectric Micromachined Ultrasonic Transducers (PMUT), are used to evaluate and monitor the pre-tensioning of a bolted joint structural system. For bolted joints to function properly, it is essential to maintain a suitable level of pre-tensioning. In this work, an array of PMUTs attached to the head and to the end of a bolt, serve as transmitter and receiver, respectively, in a pitch-catch Ultrasonic Testing (UT) scenario. The primary objective is to detect the Change in Time of Flight (CTOF) of the acoustic wave generated by the PMUT array and propagating along the bolt's axis between a non-loaded bolt and a bolt in service. To model the pre-tensioning of bolted joints and the transmission of the acoustic wave to and from a group of PMUTs through the bolt, a set of numerical models is created. The CTOF is found to be linearly related to the amount of pre-tensioning. The numerical model is validated through comparisons with the results of a preliminary experimental campaign.

4.
Sensors (Basel) ; 19(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597341

RESUMEN

Environment perception is crucial for the safe navigation of vehicles and robots to detect obstacles in their surroundings. It is also of paramount interest for navigation of human beings in reduced visibility conditions. Obstacle avoidance systems typically combine multiple sensing technologies (i.e., LiDAR, radar, ultrasound and visual) to detect various types of obstacles under different lighting and weather conditions, with the drawbacks of a given technology being offset by others. These systems require powerful computational capability to fuse the mass of data, which limits their use to high-end vehicles and robots. INSPEX delivers a low-power, small-size and lightweight environment perception system that is compatible with portable and/or wearable applications. This requires miniaturizing and optimizing existing range sensors of different technologies to meet the user's requirements in terms of obstacle detection capabilities. These sensors consist of a LiDAR, a time-of-flight sensor, an ultrasound and an ultra-wideband radar with measurement ranges respectively of 10 m, 4 m, 2 m and 10 m. Integration of a data fusion technique is also required to build a model of the user's surroundings and provide feedback about the localization of harmful obstacles. As primary demonstrator, the INSPEX device will be fixed on a white cane.

5.
Opt Express ; 26(7): 8470-8478, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715813

RESUMEN

A systematic analysis of photonic bands and group index in silicon grating waveguides is performed, in order to optimize band-edge slow-light behavior in integrated structures with low losses. A combination of numerical methods and perturbation theory is adopted. It is shown that a substantial increase of slow light bandwidth is achieved when decreasing the internal width of the waveguide and the silicon thickness in the cladding region. It is also observed that a reduction of the internal width does not undermine the performance of an adiabatic taper.

6.
Artículo en Inglés | MEDLINE | ID: mdl-25571308

RESUMEN

A high density wireless electroencephalographic (EEG) platform has been designed. It is able to record up to 64 EEG channels with electrode to tissue impedance (ETI) monitoring. The analog front-end is based on two kinds of low power ASICs implementing the active electrodes and the amplifier. A power efficient compression algorithm enables the use of continuous wireless transmission of data through Bluetooth for real-time monitoring with an overall power consumption of about 350 mW. EEG acquisitions on five subjects (one healthy subject and four patients suffering from epilepsy) have been recorded in parallel with a reference system commonly used in clinical practice and data of the wireless prototype and reference system have been processed with an automatic tool for seizure detection and localization. The false alarm rates (0.1-0.5 events per hour) are comparable between the two system and wireless prototype also detected the seizure correctly and allowed its localization.


Asunto(s)
Electroencefalografía/instrumentación , Convulsiones/diagnóstico , Electroencefalografía/normas , Diseño de Equipo , Humanos , Estándares de Referencia , Convulsiones/fisiopatología , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA