Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Healthcare (Basel) ; 11(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37372847

RESUMEN

In this study, we discussed our contribution to building a data analytic framework that supports clinical statistics and analysis by leveraging a scalable standards-based data model named Fast Healthcare Interoperability Resource (FHIR). We developed an intelligent algorithm that is used to facilitate the clinical data analytics process on FHIR-based data. We designed several workflows for patient clinical data used in two hospital information systems, namely patient registration and laboratory information systems. These workflows exploit various FHIR Application programming interface (APIs) to facilitate patient-centered and cohort-based interactive analyses. We developed an FHIR database implementation that utilizes FHIR APIs and a range of operations to facilitate descriptive data analytics (DDA) and patient cohort selection. A prototype user interface for DDA was developed with support for visualizing healthcare data analysis results in various forms. Healthcare professionals and researchers would use the developed framework to perform analytics on clinical data used in healthcare settings. Our experimental results demonstrate the proposed framework's ability to generate various analytics from clinical data represented in the FHIR resources.

2.
Healthcare (Basel) ; 11(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36766965

RESUMEN

Although Health Level Seven (HL 7) message standards (v2, v3, Clinical Document Architecture (CDA)) have been commonly adopted, there are still issues associated with them, especially the semantic interoperability issues and lack of support for smart devices (e.g., smartphones, fitness trackers, and smartwatches), etc. In addition, healthcare organizations in many countries are still using proprietary electronic health record (EHR) message formats, making it challenging to convert to other data formats-particularly the latest HL7 Fast Health Interoperability Resources (FHIR) data standard. The FHIR is based on modern web technologies such as HTTP, XML, and JSON and would be capable of overcoming the shortcomings of the previous standards and supporting modern smart devices. Therefore, the FHIR standard could help the healthcare industry to avail the latest technologies benefits and improve data interoperability. The data representation and mapping from the legacy data standards (i.e., HL7 v2 and EHR) to the FHIR is necessary for the healthcare sector. However, direct data mapping or conversion from the traditional data standards to the FHIR data standard is challenging because of the nature and formats of the data. Therefore, in this article, we propose a framework that aims to convert proprietary EHR messages into the HL7 v2 format and apply an unsupervised clustering approach using the DBSCAN (density-based spatial clustering of applications with noise) algorithm to automatically group a variety of these HL7 v2 messages regardless of their semantic origins. The proposed framework's implementation lays the groundwork to provide a generic mapping model with multi-point and multi-format data conversion input into the FHIR. Our experimental results show the proposed framework's ability to automatically cluster various HL7 v2 message formats and provide analytic insight behind them.

3.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336282

RESUMEN

The Industrial Internet of Things (IIoT) is gaining importance as most technologies and applications are integrated with the IIoT. Moreover, it consists of several tiny sensors to sense the environment and gather the information. These devices continuously monitor, collect, exchange, analyze, and transfer the captured data to nearby devices or servers using an open channel, i.e., internet. However, such centralized system based on IIoT provides more vulnerabilities to security and privacy in IIoT networks. In order to resolve these issues, we present a blockchain-based deep-learning framework that provides two levels of security and privacy. First a blockchain scheme is designed where each participating entities are registered, verified, and thereafter validated using smart contract based enhanced Proof of Work, to achieve the target of security and privacy. Second, a deep-learning scheme with a Variational AutoEncoder (VAE) technique for privacy and Bidirectional Long Short-Term Memory (BiLSTM) for intrusion detection is designed. The experimental results are based on the IoT-Botnet and ToN-IoT datasets that are publicly available. The proposed simulations results are compared with the benchmark models and it is validated that the proposed framework outperforms the existing system.


Asunto(s)
Cadena de Bloques , Aprendizaje Profundo , Seguridad Computacional , Internet , Privacidad
4.
Sensors (Basel) ; 22(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35214350

RESUMEN

Digital healthcare is a composite infrastructure of networking entities that includes the Internet of Medical Things (IoMT)-based Cyber-Physical Systems (CPS), base stations, services provider, and other concerned components. In the recent decade, it has been noted that the demand for this emerging technology is gradually increased with cost-effective results. Although this technology offers extraordinary results, but at the same time, it also offers multifarious security perils that need to be handled effectively to preserve the trust among all engaged stakeholders. For this, the literature proposes several authentications and data preservation schemes, but somehow they fail to tackle this issue with effectual results. Keeping in view, these constraints, in this paper, we proposed a lightweight authentication and data preservation scheme for IoT based-CPS utilizing deep learning (DL) to facilitate decentralized authentication among legal devices. With decentralized authentication, we have depreciated the validation latency among pairing devices followed by improved communication statistics. Moreover, the experimental results were compared with the benchmark models to acknowledge the significance of our model. During the evaluation phase, the proposed model reveals incredible advancement in terms of comparative parameters in comparison with benchmark models.


Asunto(s)
Seguridad Computacional , Internet de las Cosas , Comunicación , Atención a la Salud , Tecnología
5.
Environ Sci Pollut Res Int ; 29(57): 85727-85741, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35001275

RESUMEN

The enforcement of the Movement Control Order to curtail the spread of COVID-19 has affected home energy consumption, especially HVAC systems. Occupancy detection and estimation have been recognized as key contributors to improving building energy efficiency. Several solutions have been proposed for the past decade to improve the precision performance of occupancy detection and estimation in the building. Environmental sensing is one of the practical solutions to detect and estimate occupants in the building during uncertain behavior. However, the literature reveals that the performance of environmental sensing is relatively poor due to the poor quality of the training dataset used in the model. This study proposed a smart sensing framework that combined camera-based and environmental sensing approaches using supervised learning to gather standard and robust datasets related to indoor occupancy that can be used for cross-validation of different machine learning algorithms in formal research. The proposed solution is tested in the living room with a prototype system integrated with various sensors using a random forest regressor, although other techniques could be easily integrated within the proposed framework. The primary implication of this study is to predict the room occupation through the use of sensors providing inputs into a model to lower energy consumption. The results indicate that the proposed solution can obtain data, process, and predict occupant presence and number with 99.3% accuracy. Additionally, to demonstrate the impact of occupant number in energy saving, one room with two zones is modeled each zone with air condition with different thermostat controller. The first zone uses IoFClime and the second zone uses modified IoFClime using a design-builder. The simulation is conducted using EnergyPlus software with the random simulation of 10 occupants and local climate data under three scenarios. The Fanger model's thermal comfort analysis shows that up to 50% and 25% energy can be saved under the first and third scenarios.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Humanos , Contaminación del Aire Interior/análisis , Aire Acondicionado , Clima , Eficiencia
6.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35062491

RESUMEN

Due to the value and importance of patient health records (PHR), security is the most critical feature of encryption over the Internet. Users that perform keyword searches to gain access to the PHR stored in the database are more susceptible to security risks. Although a blockchain-based healthcare system can guarantee security, present schemes have several flaws. Existing techniques have concentrated exclusively on data storage and have utilized blockchain as a storage database. In this research, we developed a unique deep-learning-based secure search-able blockchain as a distributed database using homomorphic encryption to enable users to securely access data via search. Our suggested study will increasingly include secure key revocation and update policies. An IoT dataset was used in this research to evaluate our suggested access control strategies and compare them to benchmark models. The proposed algorithms are implemented using smart contracts in the hyperledger tool. The suggested strategy is evaluated in comparison to existing ones. Our suggested approach significantly improves security, anonymity, and monitoring of user behavior, resulting in a more efficient blockchain-based IoT system as compared to benchmark models.


Asunto(s)
Cadena de Bloques , Aprendizaje Profundo , Registros de Salud Personal , Manejo de Datos , Atención a la Salud , Humanos
7.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35062530

RESUMEN

The IoT refers to the interconnection of things to the physical network that is embedded with software, sensors, and other devices to exchange information from one device to the other. The interconnection of devices means there is the possibility of challenges such as security, trustworthiness, reliability, confidentiality, and so on. To address these issues, we have proposed a novel group theory (GT)-based binary spring search (BSS) algorithm which consists of a hybrid deep neural network approach. The proposed approach effectively detects the intrusion within the IoT network. Initially, the privacy-preserving technology was implemented using a blockchain-based methodology. Security of patient health records (PHR) is the most critical aspect of cryptography over the Internet due to its value and importance, preferably in the Internet of Medical Things (IoMT). Search keywords access mechanism is one of the typical approaches used to access PHR from a database, but it is susceptible to various security vulnerabilities. Although blockchain-enabled healthcare systems provide security, it may lead to some loopholes in the existing state of the art. In literature, blockchain-enabled frameworks have been presented to resolve those issues. However, these methods have primarily focused on data storage and blockchain is used as a database. In this paper, blockchain as a distributed database is proposed with a homomorphic encryption technique to ensure a secure search and keywords-based access to the database. Additionally, the proposed approach provides a secure key revocation mechanism and updates various policies accordingly. As a result, a secure patient healthcare data access scheme is devised, which integrates blockchain and trust chain to fulfill the efficiency and security issues in the current schemes for sharing both types of digital healthcare data. Hence, our proposed approach provides more security, efficiency, and transparency with cost-effectiveness. We performed our simulations based on the blockchain-based tool Hyperledger Fabric and OrigionLab for analysis and evaluation. We compared our proposed results with the benchmark models, respectively. Our comparative analysis justifies that our proposed framework provides better security and searchable mechanism for the healthcare system.


Asunto(s)
Cadena de Bloques , Registros de Salud Personal , Atención a la Salud , Humanos , Redes Neurales de la Computación , Reproducibilidad de los Resultados
8.
Am J Infect Control ; 48(12): 1516-1519, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32621859

RESUMEN

This paper presents a narrative review study of 5 popular data repositories focusing on challenges of pregnant women protection during the COVID-19 pandemic. The study concludes that the likelihood of a vertical transmission of COVID-19 infection from pregnant women to neonates was not observed. Nevertheless, it remains a serious risk for them during their earlier stage of pregnancy, thus, special attention from health professionals has been recommended.


Asunto(s)
COVID-19/transmisión , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Complicaciones Infecciosas del Embarazo/virología , Atención Prenatal/métodos , SARS-CoV-2 , COVID-19/virología , Femenino , Humanos , Recién Nacido , Embarazo
9.
J Biosaf Biosecur ; 2(2): 51-57, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33521592

RESUMEN

Coronavirus disease 2019 (COVID-19) is an emerging disease caused by the coronavirus, SARS-CoV-2, which leads to severe respiratory infections in humans. COVID-19 was first reported in December 2019 in Wuhan city, a populated area of the Hubei province in China. As of now, Wuhan and other cities nearby have become safe places for locals. The rapid control of the spread of COVID-19 infection was made possible due to several interventions and measures that were undertaken in Wuhan. This narrative review study was designed to evaluate the emerging literature on the combined measures taken to control the COVID-19 pandemic in Wuhan city. Science Direct, Springer, Web of Science, and the PubMed data repositories were searched for studies published between December 1, 2019, and June 07, 2020. The referred "preferred reporting items for systematic reviews and meta-analyses" (PRISMA) protocol was used to conduct this narrative review. A total of 330 research studies were found as a result of the initial search based on exclusion and inclusion criteria, and 30 articles were chosen on final evaluation. It was discovered that the combined measures to control the spread of COVID-19 in Wuhan included cordon sanitaire, social distancing, universal symptom surveys, quarantine strategies, and transport restrictions. Based on the recommendations presented in this review study, existing policies with regard to combined measures and public health policies can be enforced by other countries to implement a rapid control procedure to control the spread of the COVID-19 pandemic.

10.
J Healthc Eng ; 2019: 5810540, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316743

RESUMEN

Compression, in general, aims to reduce file size, with or without decreasing data quality of the original file. Digital Imaging and Communication in Medicine (DICOM) is a medical imaging file standard used to store multiple information such as patient data, imaging procedures, and the image itself. With the rising usage of medical imaging in clinical diagnosis, there is a need for a fast and secure method to share large number of medical images between healthcare practitioners, and compression has always been an option. This work analyses the Huffman coding compression method, one of the lossless compression techniques, as an alternative method to compress a DICOM file in open PACS settings. The idea of the Huffman coding compression method is to provide codeword with less number of bits for the symbol that has a higher value of byte frequency distribution. Experiments using different type of DICOM images are conducted, and the analysis on the performances in terms of compression ratio and compression/decompression time, as well as security, is provided. The experimental results showed that the Huffman coding technique has the capability to compress the DICOM file up to 1 : 3.7010 ratio and up to 72.98% space savings.


Asunto(s)
Compresión de Datos/métodos , Bases de Datos Factuales , Diagnóstico por Imagen , Registros Electrónicos de Salud , Humanos
11.
Artículo en Inglés | MEDLINE | ID: mdl-22255503

RESUMEN

Automating the detection of lesions in liver CT scans requires a high performance and robust solution. With CT-scan start to become the norm in emergency department, the need for a fast and efficient liver lesions detection method is arising. In this paper, we propose a fast and evolvable method to profile the features of pre-segmented healthy liver and use it to detect the presence of liver lesions in emergency scenario. Our preliminary experiment with the MICCAI 2007 grand challenge datasets shows promising results of a fast training time, ability to evolve the produced healthy liver profiles, and accurate detection of the liver lesions. Lastly, the future work directions are also presented.


Asunto(s)
Algoritmos , Cuidados Críticos/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Técnica de Sustracción , Tomografía Computarizada por Rayos X/métodos , Humanos , Intensificación de Imagen Radiográfica/métodos , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA