Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 457: 140057, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908248

RESUMEN

The shelf life of perishable foods is estimated through expensive and imprecise analyses that do not account for improper storage. Smart packaging, obtained by agile manufacturing of nanofibers functionalized with natural pigments from agri-food residues, presents promising potential for real-time food quality monitoring. This study employed the solution blow spinning (SBS) technique for the rapid production of smart nanofiber mats based on polycaprolactone (PCL), incorporating extracts of agricultural residues rich in anthocyanins from eggplant (EE) or purple cabbage (CE) for monitoring food quality. The addition of EE or CE to the PCL matrix increased the viscosity of the solution and the diameter of the nanofibers from 156 nm to 261-370 nm. The addition of extracts also improved the mechanical and water-related properties of the nanofibers, although it reduced the thermal stability. Attenuated total reflectance Fourier-transform infrared spectroscopy confirmed the incorporation of anthocyanins into PCL nanofibers. Nanofiber mats incorporated with EE or CE exhibited visible color changes (ΔE ≥ 3) in response to buffer solutions (pH between 3 and 10), and ammonia vapor. Smart nanofibers have demonstrated the ability to monitor fish fillet spoilage through visible color changes (ΔE ≥ 3) during storage. Consequently, smart nanofibers produced by the SBS technique, using PCL and anthocyanins from agro-industrial waste, reveal potential as smart packaging materials for food.


Asunto(s)
Antocianinas , Embalaje de Alimentos , Nanofibras , Poliésteres , Nanofibras/química , Poliésteres/química , Antocianinas/química , Antocianinas/análisis , Embalaje de Alimentos/instrumentación , Calidad de los Alimentos , Solanum melongena/química , Brassica/química , Animales
2.
Polymers (Basel) ; 15(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36850198

RESUMEN

Sterilization is a fundamental step to eliminate microorganisms prior to the application of products, especially in the food and medical industries. γ-irradiation is one of the most recommended and effective methods used for sterilization, but its effect on the properties and performance of bio-based polymers is negligible. This work is aimed at evaluating the influence of γ-radiation at doses of 5, 10, 15, 25, 30, and 40 kGy on the morphology, properties, and performance of bioplastic produced from onion bulb (Allium cepa L.), using two hydrothermal synthesis procedures. These procedures differ in whether the product is washed or not after bioplastic synthesis, and are referred to as the unwashed hydrothermally treated pulp (HTP) and washed hydrothermally treated pulp (W-HTP). The morphological analysis indicated that the film surfaces became progressively rougher and more irregular for doses above 25 kGy, which increases their hydrophobicity, especially for the W-HTP samples. In addition, the FTIR and XRD results indicated that irradiation changed the structural and chemical groups of the samples. There was an increase in the crystallinity index and a predominance of the interaction of radiation with the hydroxyl groups-more susceptible to the oxidative effect-besides the cleavage of chemical bonds depending on the γ-radiation dose. The presence of soluble carbohydrates influenced the mechanical behavior of the samples, in which HTP is more ductile than W-HTP, but γ-radiation did not cause a change in mechanical properties proportionally to the dose. For W-HTP, films there was no mutagenicity or cytotoxicity-even after γ-irradiation at higher doses. In conclusion, the properties of onion-based films varied significantly with the γ-radiation dose. The films were also affected differently by radiation, depending on their chemical composition and the change induced by washing, which influences their use in food packaging or biomedical devices.

3.
Polymers (Basel) ; 15(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771781

RESUMEN

As the development of nanotechnology progresses, organic electronics have gained momentum in recent years, and the production and rapid development of electronic devices based on organic semiconductors, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells (OPVs), and organic field effect transistors (OFETs), among others, have excelled. Their uses extend to the fabrication of intelligent screens for televisions and portable devices, due to their flexibility and versatility. Lately, great efforts have been reported in the literature to use them in the biomedical field, such as in photodynamic therapy. In tandem, there has been considerable interest in the design of advanced materials originating from natural sources. Bacterial nanocellulose (BNC) is a natural polymer synthesized by many microorganisms, notably by non-pathogenic strains of Komagataeibacter (K. xylinus, K. hansenii, and K. rhaeticus). BNC shows distinct physical and mechanical properties, including its insolubility, rapid biodegradability, tensile strength, elasticity, durability, and nontoxic and nonallergenic features, which make BNC ideal for many areas, including active and intelligent food packaging, sensors, water remediation, drug delivery, wound healing, and as conformable/flexible substrates for application in organic electronics. Here, we review BNC production methods, properties, and applications, focusing on electronic devices, especially OLEDs and flexible OLEDs (FOLEDs). Furthermore, we discuss the future progress of BNC-based flexible substrate nanocomposites.

4.
Anal Methods ; 13(38): 4528, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34581319

RESUMEN

Correction for 'Sexual pheromone detection using PANI·Ag nanohybrid and PANI/PSS nanocomposite nanosensors' by Janine Martinazzo et al., Anal. Methods, 2021, 13, 3900-3908, DOI: 10.1039/d1ay00987g.

5.
Anal Methods ; 13(35): 3900-3908, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34558574

RESUMEN

In this study, polyaniline/poly(styrene sulfonate) (PANI/PSS) nanocomposite and polyaniline·silver (PANI·Ag) nanohybrid thin films were obtained in cantilever nanosensors surface. The developed films were characterized in relation to topography, roughness, thickness, height, and structural properties. The topography study revealed that both films have a globular morphology, thickness and height in nanoscale. The gas sensing performance was investigated for sexual pheromone from the neotropical brown stink bug, Euschistus heros (F.). The sensitivities of both nanosensors based on PANI/PSS nanocomposite and PANI·Ag nanohybrid films were similar. The PANI·Ag nanohybrid nanosensor had a limit of detection of less than 3.1 ppq and limit of quantification of 10.05 ppq. The nanosensor layers were analyzed by UV-vis and FTIR showing the incorporation of Ag nanoparticles in the nanohybrid. We found that pheromone compound was adsorbed in sensing layer resulting in a reduction in the resonance frequency. The detection mechanism help us understand the good results of LOD, LOQ, sensitivity, selectivity and repeatability. The presented device has great potential for detection of the sexual pheromone from E. heros.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Atractivos Sexuales , Feromonas , Plata
6.
Mater Sci Eng C Mater Biol Appl ; 115: 111120, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32600719

RESUMEN

This paper reports on biosensors made with a matrix of polylactic acid (PLA) fibers, which are suitable for immobilization of the anti-p53 active layer for detection of p53 biomarker. The PLA fibers were produced with solution blow spinning, a method that is advantageous for its simplicity and possibility to tune the fiber properties. For the biosensors, the optimized time to deposit the fibers was 60 s, with which detection of p53 could be achieved with the limit of detection of 11 pg/mL using electrical impedance spectroscopy. This sensitivity is also sufficient to detect the p53 biomarker in patient samples, which was confirmed by distinguishing samples from cell lines with distinct p53 concentrations in a plot where the impedance spectra were visualized with the interactive document mapping (IDMAP) technique. The high sensitivity and selectivity of the biosensors may be attributed to the specific interaction between the active layer and p53 modeled with a Langmuir-Freundlich and Freundlich isotherms and inferred from the analysis of the vibrational bands at 1550, 1650 and 1757 cm-1 using polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The successful immobilization of the active layer is evidence that the approach based on solution blown spun fibers may be replicated to other types of biosensors.


Asunto(s)
Anticuerpos/metabolismo , Técnicas Biosensibles/instrumentación , Proteína p53 Supresora de Tumor/análisis , Anticuerpos/química , Línea Celular , Espectroscopía Dieléctrica , Humanos , Límite de Detección , Células MCF-7 , Poliésteres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA