Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(16): 26463-26473, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710507

RESUMEN

The enhancement in responsivity of photodiodes (PDs) or avalanche photodiodes (APDs) with the traditional flip-chip bonding package usually comes at the expense of degradation in the optical-to-electrical (O-E) bandwidth due to the increase of parasitic capacitance. In this work, we demonstrate backside-illuminated In0.52Al0.48As based APDs with novel flip-chip bonding packaging designed to relax this fundamental trade-off. The inductance induced peak in the measured O-E frequency response of these well-designed and well-packaged APDs, which can be observed around its 3-dB bandwidth (∼30 GHz), effectively widens the bandwidth and becomes more pronounced when the active diameter of the APD is aggressively downscaled to as small as 3 µm. With a typical active window diameter of 14 µm, large enough for alignment tolerance and low optical coupling loss, the packaged APD exhibits a moderate damping O-E frequency response with a bandwidth (36 vs. 31 GHz) and responsivity (3.4 vs. 2.3 A/W) superior to those of top-illuminated reference sample under 0.9 Vbr operation, to attain a high millimeter wave output power (0 dBm at 40 GHz) and output current (12.5 mA at +8.8 dBm optical power). The excellent static and dynamic performance of this design open up new possibilities to further improve the sensitivity at the receiver-end of the next-generation of passive optical network (PON) and coherent communication systems.

2.
Environ Res ; 236(Pt 1): 116715, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481055

RESUMEN

In this article, we report the synthesis, characterization of novel biofriendly 2D/2D heterostructure WS2/ZnIn2S4 material in which 2D WS2 nanosheets are uniformly distributed spatially onto the spherically arranged 2D leaves of ZnIn2S4. We then studied the in-depth photocatalytic degradation activity of this novel nanocomposite and its pristine component materials on cationic dye: malachite green, anionic dye: congo red and reduction of heavy metal: chromium(VI) and the degradation efficiency of composite material was also tested on rhodamine-B, methylene blue, methyl orange dyes and acetaminophen/paracetamol drug. Form factor, structure factor and shape factor analysis has been carried out using X-ray diffractometry (XRD). Bond vibrations, functional groups and phonon vibration mode analysis has been done based on Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. Morphological and compositional analysis has been done using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM). Surface area and pore size/distribution was characterized using Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda Model. Degradation pathways and intermediate products are proposed using the high-performance liquid chromatography (HPLC). Photocatalytic activity of the nanocomposite WS2/ZnIn2S4 is compared with pristine ZnIn2S4 and pristine WS2, which shows more than 50% enhancement in both efficiency and rate of degradation/reduction for all the pollutants. A scavenger study was carried out to get insight of primary and secondary reactive oxygen species (ROS) taking part in degradation. Exciton lifetime, surface charge and stability, and flat band positions were studied based on time-correlated single photon counting (TCSPC) also known as time-resolved photoluminescence (TRPL), zeta potential, and Mott-Schottky respectively. Rate kinetics study was performed to analyze the physical and chemical behaviour of the nanocomposite with pollutants in consideration. Results show ∼100%, ∼90%, and ∼95% degradation efficiency by the heterostructure for malachite green (MG), congo red (CR), and reduction of heavy metal chromium (Cr(VI)) respectively within 5 min, which is a huge improvement as compared to pristine WS2 and pristine ZnIn2S4, both of which show the efficiencies of only ∼25% to∼75% in all the cases.

3.
N Am J Med Sci ; 4(3): 109-16, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22454821

RESUMEN

This case is presented to explain that developmental dyslexia and related autistic spectrum disorders have solely pathological origins. There is a general consensus of opinion which supports the phonological theory. However, this largely ignores the biological basis for all aspects of the brain's development and function, and hence, for its dysfunction. A unified explanation must take into account all salient features including cognitive dysfunction, encephalograph (EEG) frequencies, neural networks, physiological systems, autonomic nervous system and the function of the cerebellum. It must explain the significance of the brain waves and neurons and their normally synchronized or coherent function. This article builds upon an earlier article by the authors, which incorporates a review and discussion of the prevailing theories or models for developmental dyslexia. It looks at the issues from a top-down 'systems biology' perspective. It concludes that it may be only the body's biochemistry and, in particular, the onset of pathologies that explain the phenomena which we recognize as developmental dyslexia. Pathologies experienced in the early prepubescent years influence neural development. They influence the speed and coherent transmission of data between the senses and neural centers. It is proposed that this explains the nature and occurrence of what we recognize as developmental dyslexia.

4.
N Am J Med Sci ; 2(10): 444-56, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22558546

RESUMEN

BACKGROUND: This article discusses factors which materially influence the diagnosis, prevention and treatment of diabetes mellitus but which may be overlooked by the prevailing biomedical paradigm. That cognition can be mathematically linked to the function of the autonomic nervous system and physiological systems casts new light upon the mechanisms responsible for homeostasis and origins of disease. In particular, it highlights the limitations of the reductionist biomedical approach which considers mainly the biochemistry of single pathologies rather than considering the neural mechanisms which regulate the function of physiological systems, and inherent visceral organs; and which are subsequently manifest as biochemistries of varying degrees of complexity and severity. As a consequence, histopathological tests are fraught with inherent limitations and many categories of drugs are significantly ineffective. AIMS: Such limitations may be explained if disease (in particular diabetes mellitus) has multiple origins, is multi-systemic in nature and, depending upon the characteristics of each pathology, is influenced by genotype and/or phenotype. RESULTS: This article highlights the influence of factors which are not yet considered re. the aetiology of diabetes mellitus e.g. the influence of light and sensory input upon the stability of the autonomic nervous system; the influence of raised plasma viscosity upon rates of reaction; the influence of viruses and/or of modified live viruses given in vaccinations; systemic instability, in particular the adverse influence of drinks and lack of exercise upon the body's prevailing pH and its subsequent influence upon levels of magnesium and other essential trace elements. CONCLUSIONS: This application of the top-down systems biology approach may provide a plausible and inclusive explanation for the nature and occurrence of diabetes mellitus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA