RESUMEN
OBJECTIVE: Oxidative stress plays an important role in neuropathic pain (NP). Spinal manipulative therapy (SMT) can exert beneficial effects on pain outcomes in humans and in animal models. SMT can also modulate oxidative stress markers in both humans and animals. We aimed to determine the effect of Impulse®-assisted SMT (ISMT) on nociception and oxidative stress biomarkers in the spinal cords and sciatic nerves of rats with NP. METHODS: NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Animals were randomly assigned to naive, sham (rats with sciatic nerve exposure but without ligatures), or CCI, with and without ISMT. ISMT was applied onto the skin area corresponding to the spinous process of L4-L5, three times per week for 2 weeks. Mechanical threshold, latency to paw withdrawal in response to thermal stimulus, and oxidative stress biomarkers in the spinal cord and sciatic nerve were the main outcomes evaluated. RESULTS: ISMT significantly increased mechanical threshold and withdrawal latency after CCI. In the spinal cord, ISMT prevented the increase of pro-oxidative superoxide anion generation and hydrogen peroxide levels. Lipid hydroperoxide levels both in the spinal cord and in the sciatic nerve were attenuated by ISMT. Total antioxidant capacity increased in the spinal cords and sciatic nerves of CCI rats with and without ISMT. CCI and ISMT did not significantly change the total thiol content of the spinal cord. CONCLUSIONS: Our findings suggest that reduced oxidative stress in the spinal cord and/or nerve may be an important mechanism underlying a therapeutic effect of SMT to manage NP nonpharmacologically.
Asunto(s)
Neuralgia , Nocicepción , Animales , Biomarcadores , Humanos , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Estrés Oxidativo/fisiología , Ratas , Nervio Ciático , Médula EspinalRESUMEN
OBJECTIVES: Whole-body vibration (WBV) is commonly used to improve motor function, balance and functional performance, but its effects on the body are not fully understood. The main objective was to evaluate the morphometric and functional effects of WBV in an experimental nerve regeneration model. METHODS: Wistar rats were submitted to unilateral sciatic nerve crush and treated with WBV (4-5 weeks), started at 3 or 10 days after injury. Functional performances were weekly assessed by sciatic functional index, horizontal ladder rung walking and narrow beam tests. Nerve histomorphometry analysis was assessed at the end of the protocol. RESULTS: Injured groups, sedentary and WBV started at 3 days, had similar functional deficits. WBV, regardless of the start time, did not alter the histomorphometry parameters in the regeneration process. CONCLUSIONS: The earlier therapy did not change the expected and natural recovery after the nerve lesion, but when the WBV starts later it seems to impair function parameter of recovery.
Asunto(s)
Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Recuperación de la Función/fisiología , Neuropatía Ciática/terapia , Vibración/uso terapéutico , Animales , Masculino , Ratas , Ratas Wistar , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatologíaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Reactive oxygen species (ROS) play an important role in neuropathic pain (i.e., pain caused by lesion or disease of the somatosensory system). We showed previously that the aqueous extract prepared from Luehea divaricata leaves, a plant explored by native ethnic groups of Brazil to treat different pathologic conditions, exhibits good antioxidant activity and induces analgesia in rats with neuropathic pain (J Ethnopharmacol, 2020; 256:112761. doi: 10.1016/j.jep.2020.112761). The effect was comparable to that of gabapentin, a drug recommended as first-line treatment for neuropathic pain. However, increasing evidence has indicated the need to accurately determine the oxidative stress level of an individual before prescribing supplemental antioxidants. AIM OF THE STUDY: This study assessed the effects of the oral administration of aqueous extract from leaves of L. divaricata on the sciatic functional index (SFI) and spinal-cord pro-oxidant and antioxidant markers of rats with neuropathic pain. MATERIALS AND METHODS: Placement of four loose chromic thread ligatures around the sciatic nerve produced chronic constriction injury (CCI) of the sciatic nerve, a commonly employed animal model to study neuropathic pain. Aqueous extract from leaves of L. divaricata (100, 300, 500 and 1000 mg/kg), gabapentin (50 mg/kg) and aqueous extract (500 mg/kg) + gabapentin (30 mg/kg) were administrated per gavage daily for 10 or 35 days post-CCI. Antinociception was assessed using the von Frey test while SFI showed functional recovery post-nerve lesion throughout the experimental period. At days 10 and 35 post-surgery, the lumbosacral spinal cord and a segment of the injured sciatic nerve were dissected out and used to determine lipid hydroperoxide levels and total antioxidant capacity (TAC). The spinal cord was also used to determine superoxide anion generation (SAG), hydrogen peroxide (H2O2) levels and total thiol content. RESULTS: As expected, the extract, gabapentin and extract + gabapentin induced antinociception in CCI rats. While no significant functional recovery was found at 10 days post-CCI, a significant recovery was found in SFI of extract-treated CCI rats at 21 and 35 days post-CCI. A significant functional recovery was found already at day 10 post-CCI in gabapentin and gabapentin + extract-treated CCI rats. The extract treatment prevented increases in lipid hydroperoxides levels and TAC in injured sciatic nerve, which were found in this tissue of vehicle-treated rats at 10 days post-CCI. Extract also prevented an increase in SAG, H2O2 and lipid hydroperoxides levels in the spinal cord, which were elevated in this tissue of vehicle-treated rats at 10 and 35 days post-CCI. Extract also prevented a decrease in total thiol content and an increase in TAC in the spinal cord of CCI rats in these same time periods. CONCLUSIONS: Aqueous extract from L. divaricata leaves was demonstrated, for the first time, to improve SFI and modulate oxidative stress markers in injured sciatic nerve and spinal cord of CCI rats. Thus, the antinociceptive effect of the extract involves modulation of oxidative stress markers in injured sciatic nerve and spinal cord.
Asunto(s)
Malvaceae , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Médula Espinal/metabolismo , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Biomarcadores/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Neuralgia/inducido químicamente , Estrés Oxidativo/fisiología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Agua/farmacologíaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Luehea divaricata, popularly known in Brazil as "açoita-cavalo", has been widely explored by different ethnic groups native to Brazil to treat different pathologic conditions, including inflammatory pain. However, no report could be found on the effect that extract of L. divaricata has on neuropathic pain. This is an important topic because convergent and divergent mechanisms underlie inflammatory vs. neuropathic pain indicate that there may not always be a clear mechanistic delineation between these two conditions. AIM OF THE STUDY: The study aimed to determine antioxidant activity and macronutrient composition of aqueous extract from leaves of L. divaricata, and the effect of oral administration on nociception in rats with chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain, one of the most commonly employed animal models of neuropathic pain. MATERIALS AND METHODS: The antioxidant activity of the extract was evaluated by total phenolic content and DPPH, ABTSâ+ and ORAC methods. Vitexin was determined by HPLC to show that the composition of the extract of the present study is similar to that used in previous studies with this genus. Total sugar and sucrose concentrations were assessed by the anthrone method, while glucose and triacilglycerides were determined using commercially available kits. Fructose concentration was calculated from values for total sugars, glucose and sucrose. Total protein was determined by Bradford assay. The effect on DNA strand breaking was investigated by inhibition of strand breaking of supercoiled DNA by hydroxyl radical. The antinociceptive effects of aqueous extract (100, 300, 500, and 1000â¯mg/kg, i.g.) were evaluated on thermal and mechanical thresholds for neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. We also compared the antinociceptive effect of the extract (500â¯mg/kg, i.g.) with that induced by gabapentin (50â¯mg/kg, i.g.), a first-line clinical treatment for neuropathic pain. The effect of co-administration of extract (500â¯mg/kg, i.g.) and low-dose gabapentin (30â¯mg/kg, i.g.) was also assessed. In addition, the effect of the extract on body weight, and blood and hepatic parameters were investigated to reveal possible side effects of treatment. RESULTS: The extract showed high content of total phenol; good reducing capacity for DPPH, ABTSâ+ and ORAC assays; presence of vitexin; and a high capacity to inhibit strand breaking of supercoiled DNA. The predominant sugar was sucrose, followed by glucose and fructose. Total protein was greater than triacylglycerides, with the latter being present in a trace amount in the extract. The extract increased the thermal and mechanical thresholds, which was reduced by CCI. The antinociceptive effect was comparable to gabapentin and was also found after co-administration of extract and low-dose gabapentin. No significant change was found in body weight and blood and hepatic indicators after extract treatment. CONCLUSIONS: Aqueous extract from L. divaricata leaves was as effective as gabapentin at attenuating CCI-induced neuropathic pain, indicating for first time the therapeutic potential of this species for this type of pain.
Asunto(s)
Malvaceae/química , Neuralgia/tratamiento farmacológico , Nocicepción/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antioxidantes/farmacología , Brasil , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Masculino , Dimensión del Dolor/métodos , Ratas , Ratas Wistar , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológicoRESUMEN
OBJECTIVES: To compare the effects of a palatable cafeteria diet on serum parameters and neuroinflammatory markers of young and aged female Wistar rats. METHODS: Three-month-old (young) and 18-month-old (aged) female Wistar rats had access to a cafeteria diet (Caf-Young, Caf-Aged) or a standard chow diet (Std-Young, Std-Aged). RESULTS: The Caf-Young group showed a higher food consumption, weight gain, visceral fat depot, serum insulin and leptin levels, and the insulin resistance index (HOMA-IR) than the Std-Young group. The Caf-Aged group exhibited an increase in interleukin-1 levels in the cerebral cortex and hippocampus. The number of GFAP-positive cells did not differ between the groups, but there was a diet effect in the cerebral cortex and an age effect in the hippocampus. Phospho-tau expression did not differ between the groups. DISCUSSION: The 3- and 18-month-old rats responded differently to a cafeteria diet. Insulin and leptin levels are elevated in young animals fed a cafeteria diet, whereas aged animals are prone to neuroinflammation (indicated by an increase in interleukin-1ß levels). A combination of hypercaloric diet and senescence have detrimental effects on the inflammatory response in the brain, which may predispose to neurological diseases.
Asunto(s)
Envejecimiento , Encéfalo/metabolismo , Dieta Alta en Grasa , Encefalitis/metabolismo , Animales , Glucemia/análisis , Corteza Cerebral/metabolismo , Encefalitis/etiología , Femenino , Hipocampo/metabolismo , Insulina/sangre , Resistencia a la Insulina , Leptina/sangre , Neuroglía/metabolismo , Ratas Wistar , Proteínas tau/metabolismoRESUMEN
We determined the antioxidant potential of fractions obtained from leaves of Schinus terebinthifolius, a medicinal plant known in Brazil as aroeira, to select the fraction with the best yield and antioxidant performance. These qualities were found in the methanol fraction (MeF), which was administered intraperitoneally (20 mg/kg/day) for 3 and 10 days to rats with chronic constriction injury (CCI) of the sciatic nerve, a model of neuropathic pain. The MeF increased the mechanical and thermal thresholds that had been lowered by CCI. In parallel, the lumbosacral spinal cord showed an increase in superoxide dismutase but a decrease in glutathione peroxidase and glutathione-S-transferase activities in saline- and MeF-treated CCI rats. Catalase activity decreased only in saline-treated CCI rats for 10 days. Total thiols decreased in saline- and MeF-treated CCI rats. Ascorbic acid increased in these rats at day 3 but only in saline-treated CCI rats at day 10. No change was found in hydrogen peroxide and lipid hydroperoxide. Open-field and elevated plus-maze tests and blood parameters of liver function did not change. Thus, the MeF from leaves of S. terebinthifolius has an antinociceptive action with no toxic effects, and it affects oxidant biomarkers in the spinal cord of rats with CCI.
RESUMEN
In the present work, we evaluated the effect of gestational hypermethioninemia on locomotor activity, anxiety, memory, and exploratory behavior of rat offspring through the following behavior tests: open field, object recognition, and inhibitory avoidance. Histological analysis was also done in the brain tissue of pups. Wistar female rats received methionine (2.68 µmol/g body weight) by subcutaneous injections during pregnancy. Control rats received saline. Histological analyses were made in brain tissue from 21 and 30 days of age pups. Another group was left to recover until the 30th day of life to perform behavior tests. Results from open field task showed that pups exposed to methionine during intrauterine development spent more time in the center of the arena. In the object recognition memory task, we observed that methionine administration during pregnancy reduced total exploration time of rat offspring during training session. The test session showed that methionine reduced the recognition index. Regarding to inhibitory avoidance task, the decrease in the step-down latency at 1 and 24 h after training demonstrated that maternal hypermethioninemia impaired short-term and long-term memories of rat offspring. Electron microscopy revealed alterations in the ultrastructure of neurons at 21 and 30 days of age. Our findings suggest that the cell morphological changes caused by maternal hypermethioninemia may be, at least partially, associated to the memory deficit of rat offspring.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/inducido químicamente , Encéfalo/efectos de los fármacos , Glicina N-Metiltransferasa/deficiencia , Trastornos de la Memoria/inducido químicamente , Metionina/farmacología , Efectos Tardíos de la Exposición Prenatal , Animales , Animales Recién Nacidos , Encéfalo/ultraestructura , Conducta Exploratoria/efectos de los fármacos , Femenino , Memoria/efectos de los fármacos , Memoria/fisiología , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Embarazo , Ratas WistarRESUMEN
OBJECTIVE: The purpose of this study was to investigate oxidative-stress parameters in individuals with chronic neck or back pain after 5 weeks of treatment with high-velocity, low-amplitude (HVLA) spinal manipulation. METHODS: Twenty-three individuals aged 38.2 ± 11.7 years with nonspecific chronic neck or back pain verified by the Brazilian Portuguese version of the Chronic Pain Grade, with a sedentary lifestyle, no comorbidities, and not in adjuvant therapy, underwent treatment with HVLA chiropractic manipulation twice weekly for 5 weeks. Therapeutic procedures were carried out by an experienced chiropractor. Blood samples were assessed before and after treatment to determine the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx), and the levels of nitric oxide metabolites and lipid hydroperoxides. These blood markers were analyzed by paired Student t test. Differences were considered statistically significant, when P was <.05. RESULTS: There was no change in catalase but an increase in SOD (0.35 ± 0.03 U SOD per milligram of protein vs 0.44 ± 0.04 U SOD per milligram of protein; P < .05) and GPx (7.91 ± 0.61 nmol/min per milligram of protein vs 14.07 ± 1.07 nmol/min per milligram of protein; P < .001) activities after the treatment. The nitric oxide metabolites and the lipid hydroperoxides did not change after treatment. CONCLUSION: High-velocity, low-amplitude spinal manipulation twice weekly for 5 weeks increases the SOD and GPx activities. Previous studies have shown a relationship between pain and oxidative and nitrosative parameters; thus, it is possible that changes in these enzymes might be related to the analgesic effect of HVLA spinal manipulation.
Asunto(s)
Dolor de la Región Lumbar/rehabilitación , Manipulación Quiropráctica/métodos , Manipulación Espinal/métodos , Dolor de Cuello/rehabilitación , Estrés Oxidativo/fisiología , Adulto , Biomarcadores/sangre , Brasil , Catalasa/metabolismo , Dolor Crónico/rehabilitación , Estudios de Cohortes , Femenino , Humanos , Dolor de la Región Lumbar/sangre , Dolor de la Región Lumbar/diagnóstico , Masculino , Persona de Mediana Edad , Dolor de Cuello/sangre , Dolor de Cuello/diagnóstico , Óxido Nítrico/sangre , Índice de Severidad de la Enfermedad , Superóxido Dismutasa/sangre , Resultado del TratamientoRESUMEN
Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.
Asunto(s)
Acetilcisteína/farmacología , Aspartame/administración & dosificación , Encéfalo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Glucemia/análisis , Peso Corporal , Encéfalo/metabolismo , Masculino , Ratas , Ratas WistarRESUMEN
Neuropathic pain is a very common dysfunction caused by several types of nerve injury. This condition leads to a variety of pathological changes in central nervous system regions related to pain transmission. It has been demonstrated that nociception is modulated by reactive oxidative species and treatments with antioxidant compounds produce antinociceptive effects. Thus, the aim of the present study was to investigate oxidative parameters in spinal and supraspinal regions following sciatic nerve transection (SNT). In behavioral assessments, animals showed mechanical allodynia and a significant functional impairment following SNT, measured by von Frey hairs test and sciatic functional index, respectively. Superoxide dismutase activity was increased 3 and 7 days following SNT in cerebral cortex and brainstem. Catalase activity was also increased in cerebral cortex 3 days after SNT. Ascorbic acid levels were decreased 7 days in the spinal cord only in SNT group. We also showed an increase in lipid peroxidation in cerebral cortex and brainstem 3 days after surgery in SNT and sham groups. These results showed that supraspinal regions also exhibit changes in antioxidant activity after SNT and demonstrate an intricate relationship among antioxidant defenses in different regions of the neuro axis related to pain transmission.
Asunto(s)
Estrés Oxidativo , Nervio Ciático/cirugía , Animales , Conducta Animal , Masculino , Ratas , Ratas WistarRESUMEN
Transcranial direct current stimulation (tDCS) induces cortical excitability changes in animals and humans that can last beyond the duration of stimulation. Preliminary evidence suggests that tDCS may have an analgesic effect; however, the timing of these effects, especially when associated with consecutive sessions of stimulation in a controlled animal experiment setting, has yet to be fully explored. To evaluate the effects of tDCS in inflammatory chronic pain origin immediately and 24 h after the last treatment session, complete Freund's adjuvant (CFA) was injected (100 µl) in the right footpad to induce inflammation. On the 15th day after CFA injection, rats were divided into two groups: tDCS (n = 9) and sham (n = 9). The tDCS was applied for 8 days. The hot plate and Von Frey tests were applied immediately and 24 h after the last tDCS session. Eight 20-min sessions of 500 µA anodal tDCS resulted in antinociceptive effects as assessed by the hot plate test immediately (P = 0.04) and 24 h after the last tDCS session (P = 0.006), for the active tDCS group only. There was increased withdrawal latency in the Von Frey test at 24 h after the last session (P = 0.01). Our findings confirm the hypothesis that tDCS induces significant, long-lasting, neuroplastic effects and expands these findings to a chronic pain model of peripheral inflammation, thus supporting the exploration of this technique in conditions associated with chronic pain and peripheral inflammation, such as osteoarthritis.
Asunto(s)
Terapia por Estimulación Eléctrica , Inflamación/terapia , Estimulación Magnética Transcraneal , Animales , Enfermedad Crónica/terapia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Electrodos , Adyuvante de Freund/toxicidad , Hiperalgesia/diagnóstico , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Dimensión del Dolor , Umbral del Dolor , Ratas , Ratas Wistar , Tiempo de ReacciónRESUMEN
Although reactive oxygen species (ROS) are involved in neuropathic pain, the direct relationship between these species and chronic constriction of sciatic nerve (CCI) has not been studied in spinal cord. Thus, this study induced CCI in rats and these animals were sacrificed 3 and 10 days after the surgical procedure to determine the superoxide dismutase (SOD) and catalase activities, as well as ascorbic acid, hydrogen peroxide (H(2)O(2)) and lipid hydroperoxide levels in lumbosacral spinal cord. Von Frey Hair and hot plate tests were performed to assess the degree of mechanical and thermal hyperalgesia at days 0, 3 and 10. The results showed that CCI significantly induced mechanical and thermal hyperalgesia at days 3 and 10. Parallel there was increase in spinal cord lipid hydroperoxide at days 3 and 10 in rats submitted to CCI. In Sham rats a significant increase in this parameter occurred at day 10. H(2)O(2) decreased at day 10 only in CCI group. SOD activity was decreased in Sham and CCI groups at day 3, while catalase activity was increased in CCI rats at days 3 and 10. Ascorbic acid levels were reduced only in CCI rats at day 3. Although the role of such changes is unclear, many were not specific to neuropathic pain and the differences could be related to different degrees of central sensitization in Sham and CCI rats.
Asunto(s)
Neuropatía Ciática/metabolismo , Médula Espinal/metabolismo , Animales , Ácido Ascórbico/metabolismo , Conducta Animal , Catalasa/metabolismo , Enfermedad Crónica , Constricción Patológica , Calor , Peróxido de Hidrógeno/metabolismo , Hiperalgesia/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Oxidación-Reducción , Estimulación Física , Ratas , Ratas Wistar , Neuropatía Ciática/psicología , Médula Espinal/patología , Superóxido Dismutasa/metabolismoRESUMEN
OBJECTIVE: This study investigates the analgesic effect of high-velocity, low-amplitude (HVLA) manipulation and antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes of men with neck pain. METHODS: Twenty-two men with neck pain of mechanical origin who were aged 20 to 50 years, were nonsmokers, had a sedentary lifestyle, had no comorbidities, and were not in adjuvant therapy underwent 6 sessions of HVLA chiropractic manipulation 3 times a week for 2 weeks. Patients were treated by the same chiropractor and under the same conditions. Blood samples were collected before the beginning of the treatment and at the end of the third and last session. Erythrocytes were separated from blood and then processed to determine SOD and GPx activities. The quadruple visual scale and the Neck Disability Index were used to demonstrate the analgesic effect of treatment. The results were analyzed by repeated-measures analysis of variance followed by Bonferroni posttest. Differences were considered significant when P was less than .05. RESULTS: Despite the tendency to reduction in SOD and increase in GPx activities, there was no significant change after the treatment. CONCLUSION: High-velocity, low-amplitude treatment for 6 sessions in men with neck pain did not affect systemic SOD and GPx activities. Despite the absence of significant changes, this study is important because it is the first to investigate the activities of SOD and GPx in patients with neck pain treated with HVLA spinal manipulation.
Asunto(s)
Eritrocitos/enzimología , Glutatión Peroxidasa/metabolismo , Manipulación Quiropráctica/métodos , Manipulación Espinal/métodos , Dolor de Cuello/enzimología , Dolor de Cuello/terapia , Superóxido Dismutasa/metabolismo , Adulto , Humanos , Masculino , Persona de Mediana Edad , Dolor de Cuello/sangre , Adulto JovenRESUMEN
The effect of parboiled rice (PR) and white rice (WR) diets on oxidative stress (OS) parameters was investigated in the kidneys of rats with streptozotocin-induced diabetes (40 mg kg(-1), iv). The experimental groups (n=8) were control fed with PR (CPR), control fed with WR, diabetic fed with PR, and diabetic fed with WR. After 30 days of treatment, all animals were anesthetized and exsanguinated before removal of kidneys, which were used to determine thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, carbonyl protein, superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione reductase, glutathione-S-transferase activities, and levels of glutathione (GSH). Total phenolic compounds were determined in WR and PR grains. Our data indicated that diabetes induced increase in TBARS and lipid hydroperoxides levels. Although PR has not prevented the rise in the levels of these measurements, its consumption by our animals resulted in higher GPx activity and GSH content than that of the CPR. Moreover, PR also presented concentration of total phenolic compounds 127% higher than WR grains. Thus, its consumption in this diabetic condition is suggested because this seems to confer greater protection against OS in the renal tissue of diabetic animals.
Asunto(s)
Antioxidantes , Culinaria/métodos , Diabetes Mellitus Experimental/dietoterapia , Riñón/efectos de los fármacos , Oryza , Estrés Oxidativo/efectos de los fármacos , Fenoles/uso terapéutico , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Fenoles/análisis , Fenoles/farmacología , Fitoterapia , Preparaciones de Plantas/farmacología , Preparaciones de Plantas/uso terapéutico , Ratas , Ratas Wistar , Semillas/química , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
This study was undertaken to examine the acute effect of interferential current on mechanical pain threshold and isometric peak torque after delayed onset muscle soreness induction in human hamstrings. Forty-one physically active healthy male volunteers aged 18-33 years were randomly assigned to one of two experimental groups: interferential current group (n = 21) or placebo group (n = 20). Both groups performed a bout of 100 isokinetic eccentric maximal voluntary contractions (10 sets of 10 repetitions) at an angular velocity of 1.05 rad · s(-1) (60° · s(-1)) to induce muscle soreness. On the next day, volunteers received either an interferential current or a placebo application. Treatment was applied for 30 minutes (4 kHz frequency; 125 µs pulse duration; 80-150 Hz bursts). Mechanical pain threshold and isometric peak torque were measured at four different time intervals: prior to induction of muscle soreness, immediately following muscle soreness induction, on the next day after muscle soreness induction, and immediately after the interferential current and placebo application. Both groups showed a reduction in isometric torque (P < 0.001) and pain threshold (P < 0.001) after the eccentric exercise. After treatment, only the interferential current group showed a significant increase in pain threshold (P = 0.002) with no changes in isometric torque. The results indicate that interferential current was effective in increasing hamstrings mechanical pain threshold after eccentric exercise, with no effect on isometric peak torque after treatment.
Asunto(s)
Terapia por Estimulación Eléctrica , Contracción Isométrica/fisiología , Manejo del Dolor , Umbral del Dolor/fisiología , Adolescente , Adulto , Ejercicio Físico , Humanos , Masculino , Músculo Esquelético/fisiología , Muslo/fisiología , Torque , Adulto JovenRESUMEN
OBJECTIVE: The aim of this study was to identify the influence of high-velocity, low-amplitude (HVLA) manipulation on lipid peroxidation and catalase activity in subjects with neck pain who answered the Neck Disability Index and quadruple visual scale questionnaires. METHODS: Twenty-two men (mean age, 38 years) with neck pain were recruited through radio and newspaper advertisements in the local media. Every patient received 6 sessions of HVLA manipulation, 3 times a week for 2 weeks. Blood samples were drawn from the cubital vein before treatment in the first session and after the third and sixth sessions. The quadruple visual scale was used with the same scheme. The Neck Disability Index questionnaire was applied before the beginning of treatment and after the last session. Catalase activity and lipoperoxidation were measured in erythrocyte samples. RESULTS: Results showed no change in lipid peroxidation. Nevertheless, the catalase activity was increased by HVLA manipulation. The same treatment reduced pain perception and disability in these subjects. CONCLUSION: The present study has shown that catalase activity of the erythrocytes, but not lipoperoxidation, increased after 6 sessions of HVLA manipulation treatment in men with neck pain. The results support the beneficial role of HVLA in the treatment of patients with neck pain.
Asunto(s)
Catalasa/metabolismo , Eritrocitos/enzimología , Peroxidación de Lípido , Manipulación Espinal/métodos , Dolor de Cuello/sangre , Dolor de Cuello/terapia , Adulto , Humanos , Masculino , Persona de Mediana Edad , Dolor de Cuello/enzimología , Dimensión del Dolor , Percepción del Dolor , Rango del Movimiento Articular , Resultado del TratamientoRESUMEN
The serotoninergic system modulates nociceptive and locomotor spinal cord circuits. Exercise improves motor function and changes dopaminergic, noradrenergic, and serotonergic central systems. However, the direct relationship between serotonin, peripheral nerve lesion and aerobic treadmill exercise has not been studied. Using immunohistochemistry and optic densitometry, this study showed that the sciatic nerve transection increased the serotoninergic immunoreactivity in neuronal cytoplasm of the magnus raphe nuclei of trained and sedentary rats. In the dorsal raphe nucleus the increase only occurred in sedentary-sham-operated rats. In the spinal cord of trained, transected rats, the ventral horn showed significant changes, while the change in dorsal horn was insignificant. Von Frey's test indicated analgesia in all exercise-trained rats. The sciatic nerve functional index indicated recovery in the trained group. Thus, both the aerobic treadmill exercise training and the nervous lesion appear to contribute to changes in serotonin immunoreactivity.
Asunto(s)
Condicionamiento Físico Animal/fisiología , Núcleos del Rafe/metabolismo , Nervio Ciático/fisiología , Serotonina/metabolismo , Médula Espinal/metabolismo , Aerobiosis , Animales , Citrato (si)-Sintasa/metabolismo , Densitometría , Miembro Posterior/fisiología , Inmunohistoquímica , Masculino , Músculo Esquelético/metabolismo , Dimensión del Dolor , Resistencia Física , Estimulación Física , Ratas , Ratas WistarRESUMEN
Glutathione (GSH) is a major non-enzymatic antioxidant which is present in all tissues. Its protective actions occur through different pathways such its role as a substrate of antioxidant enzymes, such as glutathione peroxidase (GPx) and glutathione-S-transferase (GST). Nitric oxide (NO) is involved in many physiological processes in the central nervous system, including nociception. In spite of much evidence concerning oxidative and nitrosative stress and neuropathic pain, the exact role of these molecules in pain processing is still unknown. Sciatic nerve transection (SNT) was employed to induce neuropathic pain in rats. Glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities, glutathione (GSH) content, GSH/GSSG ratio, nitric oxide metabolites (NOx) and neuronal nitric oxide synthase (nNOS) protein expression in the lumbosacral spinal cord were determined. All of these analyses were performed in the SNT and sham groups 1, 3, 7 and 15 days after surgery. There was an increase in GPx activity and in GSH content 3 days after surgery in both sham and SNT groups, but the GSH/GSSG ratio increased only in the SNT group in this time point. nNOS expression was upregulated 7 days post SNT. NOx was detected 1 day after surgery in sham and SNT groups, but at 7 and 15 days, the increase occurred only in SNT animals. These results support the role of the gluthatione system in pain physiology and highlight the involvement of NO as an important molecule related to nociception.
Asunto(s)
Antioxidantes/metabolismo , Glutatión/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Dolor/metabolismo , Nervio Ciático/lesiones , Médula Espinal/metabolismo , Análisis de Varianza , Animales , Western Blotting , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Región Lumbosacra , Masculino , Óxido Nítrico/metabolismo , Dolor/enzimología , Ratas , Ratas Wistar , Médula Espinal/enzimología , Factores de TiempoRESUMEN
Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H(2)O(2)) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H(2)O(2) concentration. However, one and 15 days after SNT, H(2)O(2) concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.
Asunto(s)
Neuralgia/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Aldehídos/metabolismo , Animales , Western Blotting , Activación Enzimática , Peróxido de Hidrógeno/metabolismo , Masculino , Neuralgia/patología , Fosfoproteínas/metabolismo , Ratas , Ratas Wistar , Médula Espinal/enzimología , Médula Espinal/patologíaRESUMEN
Oxidative stress is an important pathophysiological mechanism of many neurological diseases. Reactive oxygen and nitrogen species have been cited as molecules involved in the nociceptive process. In this study, rats were submitted to sciatic nerve transection (SNT) for induction of neuropathic pain, and enzyme activities of SOD and catalase as well as lipid peroxidation (LPO) were measured in the lumbosacral spinal cord. The results show that LPO was not changed after SNT. SOD activity was reduced 7 days after SNT, while the change in catalase activity occurred on the third and seventh days in both sham and SNT animals. Hyperalgesia in SNT group was detected at the same points in time. These results suggest that SNT was not a strong enough stimulus to deplete all antioxidant content in the spinal cord, since increase in LPO was not detected. However, the role of oxidative stress in nociception can not be excluded.