Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; : e13375, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379225

RESUMEN

In temperate-zone songbirds, the neuroanatomical changes which occur in advance of breeding, including the growth of nuclei of the vocal control system, are believed to occur downstream of gonadal recrudescence. However, evidence from wild birds is mixed. Here, we captured black-capped chickadees from the wild in early spring (March-April), summer (August-September), and winter (December-January); in addition to measuring the volumes of two vocal control nuclei (Area X and HVC), we also quantified two indicators of reproductive state (gonads and circulating gonadal steroids). Most birds captured in early spring had regressed gonads and low levels of circulating gonadal steroids, indicating these birds were not yet in full breeding condition. However, these early spring birds still had a significantly larger Area X than winter birds, while HVC did not differ in size across groups. Using data from a previously published seasonal study of black-capped chickadees (Phillmore et al., Developmental Neurobiology, 2015;75:203-216), we then compared Area X and HVC volumes from our early spring group to a breeding group of chickadees captured 3-4 weeks later in the spring. While Area X volume did not differ between the studies, breeding males in Phillmore et al. (2015) had a significantly larger HVC. Taken together, this suggests that the vernal growth of Area X occurs ahead of HVC in black-capped chickadees, and that the overall vernal changes in the vocal control system occur at least partially in advance of the breeding-associated upregulation of the hypothalamic-pituitary-gonadal axis.

2.
Learn Behav ; 50(1): 55-70, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35237946

RESUMEN

Neural plasticity in the hippocampus has been studied in a wide variety of model systems, including in avian species where the hippocampus underlies specialized spatial behaviours. Examples of such behaviours include navigating to a home roost over long distances by homing pigeons or returning to a potential nest site for egg deposit by brood parasites. The best studied example, however, is food storing in parids and the interaction between this behaviour and changes in hippocampus volume and neurogenesis. However, understanding the interaction between brain and behaviour necessitates research that includes studies with at least some form of captivity, which may itself affect hippocampal plasticity. Captivity might particularly affect spatial specialists where free-ranging movement on a large scale is especially important in daily, and seasonal, behaviours. This review examines how captivity might affect hippocampal plasticity in avian spatial specialists and specifically food-storing parids, and also considers how the effects of captivity may be mitigated by researchers studying hippocampal plasticity when the goal is understanding the relationship between behaviour and hippocampal change.


Asunto(s)
Hipocampo , Plasticidad Neuronal , Animales , Columbidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA