Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 39(43): 13157-65, 2000 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-11052668

RESUMEN

The histidine protein kinase CheA plays a central role in the bacterial chemotaxis signal transduction pathway. Autophosphorylated CheA passes its phosphoryl group to CheY very rapidly (k(cat) approximately 750 s(-)(1)). Phospho-CheY in turn influences the direction of flagellar rotation. The autophosphorylation site of CheA (His(48)) resides in its N-terminal P1 domain. The adjacent P2 domain provides a high-affinity binding site for CheY, which might facilitate the phosphotransfer reaction by tethering CheY in close proximity to the phosphodonor located in P1. To explore the contribution of P2 to the CheA --> CheY phosphotransfer reaction in the Escherichia coli chemotaxis system, we examined the transfer kinetics of a mutant CheA protein (CheADeltaP2) in which the 98 amino acid P2 domain had been replaced with an 11 amino acid linker. We used rapid-quench and stopped-flow fluorescence experiments to monitor phosphotransfer to CheY from phosphorylated wild-type CheA and from phosphorylated CheADeltaP2. The CheADeltaP2 reaction rates were significantly slower and the K(m) value was markedly higher than the corresponding values for wild-type CheA. These results indicate that binding of CheY to the P2 domain of CheA indeed contributes to the rapid kinetics of phosphotransfer. Although phosphotransfer was slower with CheADeltaP2 (k(cat)/K(m) approximately 1.5 x 10(6) M(-)(1) s(-)(1)) than with wild-type CheA (k(cat)/K(m) approximately 10(8) M(-)(1) s(-)(1)), it was still orders of magnitude faster than the kinetics of CheY phosphorylation by phosphoimidazole and other small molecule phosphodonors (k(cat)/K(m) approximately 5-50 M(-)(1) s(-)(1)). We conclude that the P1 domain of CheA also makes significant contributions to phosphotransfer rates in chemotactic signaling.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis , Metabolismo Energético , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Quimiotaxis/genética , Metabolismo Energético/genética , Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli , Histidina Quinasa , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas Quimiotácticas Aceptoras de Metilo , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Eliminación de Secuencia , Transducción de Señal/genética
2.
Proc Natl Acad Sci U S A ; 97(11): 5830-5, 2000 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-10811894

RESUMEN

Aerotactic responses in Escherichia coli are mediated by the membrane transducer Aer, a recently identified member of the superfamily of PAS domain proteins, which includes sensors of light, oxygen, and redox state. Initial studies of Aer suggested that it might use a flavin adenine dinucleotide (FAD) prosthetic group to monitor cellular redox changes. To test this idea, we purified lauryl maltoside-solubilized Aer protein by His-tag affinity chromatography and showed by high performance liquid chromatography, mass spectrometry, and absorbance spectroscopy that it bound FAD noncovalently. Polypeptide fragments spanning the N-terminal 290 residues of Aer, which contains the PAS motif, were able to bind FAD. Fusion of this portion of Aer to the flagellar signaling domain of Tsr, the serine chemoreceptor, yielded a functional aerotaxis transducer, demonstrating that the FAD-binding portion of Aer is sufficient for aerosensing. Aerotaxis-defective missense mutants identified two regions, in addition to the PAS domain, that play roles in FAD binding. Those regions flank a central hydrophobic segment needed to anchor Aer to the cytoplasmic membrane. They might contact the FAD ligand directly or stabilize the FAD-binding pocket. However, their lack of sequence conservation in Aer homologs of other bacteria suggests that they play less direct roles in FAD binding. One or both regions probably also play important roles in transmitting stimulus-induced conformational changes to the C-terminal flagellar signaling domain to trigger aerotactic behavioral responses.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Quimiotaxis/fisiología , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Transducción de Señal/fisiología , Sustitución de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Modelos Moleculares , Mutación Puntual , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
3.
J Mol Biol ; 297(3): 543-51, 2000 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-10731410

RESUMEN

The CheY protein is the response regulator in bacterial chemotaxis. Phosphorylation of a conserved aspartyl residue induces structural changes that convert the protein from an inactive to an active state. The short half-life of the aspartyl-phosphate has precluded detailed structural analysis of the active protein. Persistent activation of Escherichia coli CheY was achieved by complexation with beryllofluoride (BeF(3)(-)) and the structure determined by NMR spectroscopy to a backbone r.m.s.d. of 0.58(+/-0.08) A. Formation of a hydrogen bond between the Thr87 OH group and an active site acceptor, presumably Asp57.BeF(3)(-), stabilizes a coupled rearrangement of highly conserved residues, Thr87 and Tyr106, along with displacement of beta4 and H4, to yield the active state. The coupled rearrangement may be a more general mechanism for activation of receiver domains.


Asunto(s)
Proteínas Bacterianas , Berilio/metabolismo , Escherichia coli/enzimología , Fluoruros/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Berilio/farmacología , Sitios de Unión , Secuencia Conservada , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Proteínas de Escherichia coli , Fluoruros/farmacología , Enlace de Hidrógeno , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Conformación Proteica/efectos de los fármacos
4.
J Bacteriol ; 179(17): 5543-50, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9287011

RESUMEN

CheA, a cytoplasmic histidine autokinase, in conjunction with the CheW coupling protein, forms stable ternary complexes with the cytoplasmic signaling domains of transmembrane chemoreceptors. These signaling complexes induce chemotactic movements by stimulating or inhibiting CheA autophosphorylation activity in response to chemoeffector stimuli. To explore the mechanisms of CheA control by chemoreceptor signaling complexes, we examined the ability of various CheA fragments to interfere with receptor coupling control of CheA. CheA[250-654], a fragment carrying the catalytic domain and an adjacent C-terminal segment previously implicated in stimulatory control of CheA activity, interfered with the production of clockwise flagellar rotation and with chemotactic ability in wild-type cells. Epistasis tests indicated that CheA[250-654] blocked clockwise rotation by disrupting stimulatory coupling of CheA to receptors. In vitro coupling assays confirmed that a stoichiometric excess of CheA[250-654] fragments could exclude CheA from stimulatory receptor complexes, most likely by competing for CheW binding. However, CheA[250-654] fragments, even in vast excess, did not block receptor-mediated inhibition of CheA, suggesting that CheA[250-654] lacks an inhibitory contact site present in native CheA. This inhibitory target is most likely in the N-terminal P1 domain, which contains His-48, the site of autophosphorylation. These findings suggest a simple allosteric model of CheA control by ternary signaling complexes in which the receptor signaling domain conformationally regulates the interaction between the substrate and catalytic domains of CheA.


Asunto(s)
Quimiotaxis/fisiología , Proteínas de Escherichia coli , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Flagelos/fisiología , Histidina Quinasa , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas Quimiotácticas Aceptoras de Metilo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/aislamiento & purificación , Proteínas Recombinantes de Fusión , Células Receptoras Sensoriales , Transducción de Señal/fisiología
5.
Proc Natl Acad Sci U S A ; 94(14): 7263-8, 1997 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-9207079

RESUMEN

Bacterial chemotaxis is widely studied because of its accessibility and because it incorporates processes that are important in a number of sensory systems: signal transduction, excitation, adaptation, and a change in behavior, all in response to stimuli. Quantitative data on the change in behavior are available for this system, and the major biochemical steps in the signal transduction/processing pathway have been identified. We have incorporated recent biochemical data into a mathematical model that can reproduce many of the major features of the intracellular response, including the change in the level of chemotactic proteins to step and ramp stimuli such as those used in experimental protocols. The interaction of the chemotactic proteins with the motor is not modeled, but we can estimate the degree of cooperativity needed to produce the observed gain under the assumption that the chemotactic proteins interact directly with the motor proteins.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Quimiotaxis , Modelos Biológicos , Modelos Teóricos
6.
J Bacteriol ; 179(12): 4075-9, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9190831

RESUMEN

The newly discovered aer locus of Escherichia coli encodes a 506-residue protein with an N terminus that resembles the NifL aerosensor and a C terminus that resembles the flagellar signaling domain of methyl-accepting chemoreceptors. Deletion mutants lacking a functional Aer protein failed to congregate around air bubbles or follow oxygen gradients in soft agar plates. Membranes with overexpressed Aer protein also contained high levels of noncovalently associated flavin adenine dinucleotide (FAD). We propose that Aer is a flavoprotein that mediates positive aerotactic responses in E. coli. Aer may use its FAD prosthetic group as a cellular redox sensor to monitor environmental oxygen levels.


Asunto(s)
Proteínas Bacterianas/fisiología , Escherichia coli/fisiología , Flavoproteínas/fisiología , Transducción de Señal , Oxidación-Reducción , Oxígeno
7.
J Bacteriol ; 178(23): 6752-8, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8955292

RESUMEN

CheA is a histidine kinase central to the signal transduction pathway for chemotaxis in Escherichia coli. CheA autophosphorylates at His-48, with ATP as the phosphodonor, and then donates its phosphoryl groups to two aspartate autokinases, CheY and CheB. Phospho-CheY controls the flagellar motors, whereas phospho-CheB participates in sensory adaptation. Polypeptides encompassing the N-terminal P1 domain of CheA can be transphosphorylated in vitro by the CheA catalytic domain and yet have no deleterious effect on chemotactic ability when expressed at high levels in wild-type cells. To find out why, we examined the effects of a purified P1 fragment, CheA[1-149], on CheA-related signaling activities in vitro and devised in vivo assays for those same activities. Although readily phosphorylated by CheA[260-537], the CheA catalytic domain, CheA[1-149], was a poor substrate for transphosphorylation by full-length CheA molecules, implying that the resident P1 domain monopolizes the CheA catalytic center. CheA-H48Q, a nonphosphorylatable mutant, failed to transphosphorylate CheA[1-149], suggesting that phosphorylation of the P1 domain in cis may alleviate the exclusion effect. In agreement with these findings, a 40-fold excess of CheA[1-149] fragments did not impair the CheA autophosphorylation reaction. CheA[1-149] did acquire phosphoryl groups via reversible phosphotransfer reactions with CheB and CheY molecules. An H48Q mutant of CheA[1-149] could not participate in these reactions, indicating that His-48 is probably the substrate site. The low level of efficiency of these phosphotransfer reactions and the inability of CheA[1-149] to interfere with CheA autophosphorylation most likely account for the failure of liberated P1 domains to jam chemotactic signaling in wild-type cells. However, an excess of CheA[1-149] fragments was able to support chemotactic signaling by P1-deficient cheA mutants, demonstrating that CheA[1-149] fragments have both transphosphorylation and phosphotransfer capability in vivo.


Asunto(s)
Quimiotaxis , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Factores Quimiotácticos/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli , Histidina/metabolismo , Histidina Quinasa , Proteínas Quimiotácticas Aceptoras de Metilo , Fosforilación
9.
Mol Microbiol ; 19(4): 737-46, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8820644

RESUMEN

The serine chemoreceptor Tsr and other methyl-accepting chemotaxis proteins (MCPs) control the swimming behaviour of Escherichia coli by generating signals that influence the direction of flagellar rotation. MCPs produce clockwise (CW) signals by stimulating the autophosphorylation activity of CheA, a cytoplasmic histidine kinase, and counter-clockwise signals by inhibiting CheA. CheW couples CheA to chemoreceptor control by promoting formation of MCP/CheW/CheA ternary complexes. To identify MCP structural determinants essential for CheA stimulation, we inserted fragments of the tsr coding region into an inducible expression vector and used a swimming contest called 'pseudotaxis' to select for transformant cells carrying CW-signalling plasmids. The shortest active fragment we found, Tsr (350-470), stimulated CheA in a CheW-dependent manner, as full-length Tsr molecules do. It spans a highly conserved 'core' (370-420) that probably specifies the CheA and CheW contact sites and other determinants needed for stimulatory control of CheA. Tsr (350-470) also carries portions of the left and right arms flanking the core, which probably play roles in regulating MCP signalling state. However, this Tsr fragment lacks all of the methylation sites characteristic of MCP molecules, indicating that methylation segments are not essential for generating receptor output signals.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis/fisiología , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Proteínas de Escherichia coli , Histidina Quinasa , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Metilación , Datos de Secuencia Molecular , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Receptores de Superficie Celular/genética , Serina/metabolismo , Relación Estructura-Actividad
10.
Proc Natl Acad Sci U S A ; 92(25): 11583-7, 1995 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-8524808

RESUMEN

Chemotactic responses in Escherichia coli are typically mediated by transmembrane receptors that monitor chemoeffector levels with periplasmic binding domains and communicate with the flagellar motors through two cytoplasmic proteins, CheA and CheY. CheA autophosphorylates and then donates its phosphate to CheY, which in turn controls flagellar rotation. E. coli also exhibits chemotactic responses to substrates that are transported by the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system (PTS). Unlike conventional chemoreception, PTS substrates are sensed during their uptake and concomitant phosphorylation by the cell. The phosphoryl groups are transferred from PEP to the carbohydrates through two common intermediates, enzyme I (EI) and phosphohistidine carrier protein (HPr), and then to sugar-specific enzymes II. We found that in mutant strains HPr-like proteins could substitute for HPr in transport but did not mediate chemotactic signaling. In in vitro assays, these proteins exhibited reduced phosphotransfer rates from EI, indicating that the phosphorylation state of EI might link the PTS phospho-relay to the flagellar signaling pathway. Tests with purified proteins revealed that unphosphorylated EI inhibited CheA autophosphorylation, whereas phosphorylated EI did not. These findings suggest the following model for signal transduction in PTS-dependent chemotaxis. During uptake of a PTS carbohydrate, EI is dephosphorylated more rapidly by HPr than it is phosphorylated at the expense of PEP. Consequently, unphosphorylated EI builds up and inhibits CheA autophosphorylation. This slows the flow of phosphates to CheY, eliciting an up-gradient swimming response by the cell.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis/fisiología , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Transducción de Señal/fisiología , Transporte Biológico/genética , Metabolismo de los Hidratos de Carbono , Proteínas de Escherichia coli , Histidina Quinasa , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Biológicos , Fosfoenolpiruvato/farmacología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosforilación/efectos de los fármacos
11.
J Bacteriol ; 177(10): 2713-20, 1995 May.
Artículo en Inglés | MEDLINE | ID: mdl-7751280

RESUMEN

The cheA locus of Escherichia coli encodes two similar proteins, CheAL (654 amino acids) and CheAS (557 amino acids), which are made by initiating translation from different in-frame start sites [start(L) and start(S)]. CheAL plays an essential role in chemotactic signaling. It autophosphorylates at a histidine residue (His-48) and then donates this phosphate to response regulator proteins that modulate flagellar rotation and sensory adaptation. CheAS lacks the first 97 amino acids of CheAL, including the phosphorylation site at His-48. Although it is unable to autophosphorylate, CheAS can form heterodimers with mutant CheAL subunits to restore kinase function and chemoreceptor control of autophosphorylation activity. To determine whether these or other activities of CheAS are important for chemotaxis, we constructed cheA lesions that abrogated CheAS expression. Mutants in which the CheAS start codon was changed from methionine to isoleucine (M98I) or glutamine (M98Q) retained chemotactic ability, ranging from 50% (M98Q) to 80% (M98I) of wild-type function. These partial defects could not be alleviated by supplying CheAS from a specialized transducing phage, indicating that the lesions in CheAL--not the lack of CheAS--were responsible for the reduced chemotactic ability. In other respects, the behavior of the M98I mutant was essentially normal. Its flagellar rotation pattern was indistinguishable from wild type, and it exhibited wild-type detection thresholds and peak positions in capillary chemotaxis assays. The lack of any substantive defect in this start(S) mutant argues that CheAS makes a negligible contribution to chemotactic ability in the laboratory. Whether it has functional significance in other settings remains to be seen.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis/genética , Escherichia coli/genética , Genes Bacterianos/genética , Proteínas de la Membrana/genética , Secuencia de Bases , Cromosomas Bacterianos/genética , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli , Flagelos/fisiología , Histidina Quinasa , Proteínas Quimiotácticas Aceptoras de Metilo , Datos de Secuencia Molecular , Mutagénesis , Plásmidos/genética , Sistemas de Lectura/genética , Serina/farmacología , Transducción de Señal , Relación Estructura-Actividad
12.
J Bacteriol ; 176(20): 6340-8, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7929006

RESUMEN

Tsr, the serine chemoreceptor of Escherichia coli, has two signaling modes. One augments clockwise (CW) flagellar rotation, and the other augments counterclockwise (CCW) rotation. To identify the portion of the Tsr molecule responsible for these activities, we isolated soluble fragments of the Tsr cytoplasmic domain that could alter the flagellar rotation patterns of unstimulated wild-type cells. Residues 290 to 470 from wild-type Tsr generated a CW signal, whereas the same fragment with a single amino acid replacement (alanine 413 to valine) produced a CCW signal. The soluble components of the chemotaxis phosphorelay system needed for expression of these Tsr fragment signals were identified by epistasis analysis. Like full-length receptors, the fragments appeared to generate signals through interactions with the CheA autokinase and the CheW coupling factor. CheA was required for both signaling activities, whereas CheW was needed only for CW signaling. Purified Tsr fragments were also examined for effects on CheA autophosphorylation activity in vitro. Consistent with the in vivo findings, the CW fragment stimulated CheA, whereas the CCW fragment inhibited CheA. CheW was required for stimulation but not for inhibition. These findings demonstrate that a 180-residue segment of the Tsr cytoplasmic domain can produce two active signals. The CCW signal involves a direct contact between the receptor and the CheA kinase, whereas the CW signal requires participation of CheW as well. The correlation between the in vitro effects of Tsr signaling fragments on CheA activity and their in vivo behavioral effects lends convincing support to the phosphorelay model of chemotactic signaling.


Asunto(s)
Proteínas Bacterianas/fisiología , Quimiotaxis/fisiología , Proteínas de Escherichia coli , Escherichia coli/fisiología , Proteínas de la Membrana/fisiología , Serina/fisiología , Transducción de Señal , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Epistasis Genética , Histidina Quinasa , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Metilación , Modelos Biológicos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/fisiología , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/metabolismo , Solubilidad , Relación Estructura-Actividad
13.
Proc Natl Acad Sci U S A ; 91(12): 5485-9, 1994 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-8202513

RESUMEN

The CheA protein of Escherichia coli is a histidine autokinase that donates its phosphate groups to two target proteins, CheY and CheB, to regulate flagellar rotation and sensory adaptation during chemotactic responses. The amino-terminal third of CheA contains the autophosphorylation site, determinants needed to interact with the catalytic center of the molecule, and determinants needed for specific recognition of its phosphorylation targets. To understand the structural basis for these activities, we examined the domain organization of the CheA phosphotransfer region by using DNA sequence analysis, limited proteolytic digestion, and a genetic technique called domain liberation. Comparison of the functionally interchangeable CheA proteins of E. coli and Salmonella typhimurium revealed two extensively mismatched segments within the phosphotransfer region, 22 and 25 aa long, with sequences characteristic of domain linkers. Both segments were readily susceptible to proteases, implying that they have an extended, flexible structure. In contrast, the intervening segments of the phosphotransfer region, designated P1 and P2 (roughly 140 and 65 aa, respectively), were relatively insensitive, suggesting they correspond to more compactly folded structural domains. Their functional properties were explored by identifying portions of the cheA coding region capable of interfering with chemotactic behavior when "liberated" and expressed as polypeptides. P1 fragments were not inhibitory, but P2 fragments blocked the interaction of CheY with the rotational switch at the flagellar motor, leading to incessant forward swimming. These results suggest that P2 contains CheY-binding determinants which are normally responsible for phosphotransfer specificity. Domain-liberation approaches should prove generally useful for analyzing multidomain proteins and their interaction targets.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/química , Secuencia de Aminoácidos , Quimiotaxis , Escherichia coli/enzimología , Proteínas de Escherichia coli , Histidina Quinasa , Proteínas Quimiotácticas Aceptoras de Metilo , Datos de Secuencia Molecular , Fosforilación , Salmonella typhimurium , Transducción de Señal , Relación Estructura-Actividad
14.
J Mol Biol ; 238(2): 173-86, 1994 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-8158647

RESUMEN

Two mutants with defects in hook-associated protein 3 (HAP3) were isolated that exhibit impaired swimming only when they interact with a solid surface or a semisolid matrix. Motility and chemotaxis were normal in liquid media, even in media containing viscous agents, but cells failed to swarm in 0.28% agar. Mutants appeared to carry a full complement of flagella of normal configuration and length. However, filaments rotating counterclockwise close to a glass surface transformed from normal to straight, while filaments rotating clockwise transformed from curly to straight. Both transformations propagated from base to tip, as expected if torsionally induced. The mutations mapped to the middle of flgL, to structural gene for HAP3, and sequence analysis revealed the same coding change in both mutants: a substitution of cysteine for arginine 168. Our results show that the ability of a filament composed of normal flagellin subunits to resist mechanical stress depends on the structure of the protein (HAP3) to which it is attached at its base. The N-terminal sequence of HAP3 was found to be similar to the N-terminal sequence of flagellin, and the possibility that it provides a nucleation site for the C-terminal region of flagellin is discussed.


Asunto(s)
Proteínas Bacterianas/fisiología , Escherichia coli/fisiología , Flagelos/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Fenómenos Biomecánicos , Movimiento Celular/fisiología , Mapeo Cromosómico , Medios de Cultivo , Escherichia coli/genética , Escherichia coli/ultraestructura , Flagelos/ultraestructura , Genes Bacterianos , Datos de Secuencia Molecular , Mutación , Rotación
18.
J Bacteriol ; 173(16): 4941-51, 1991 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-1860813

RESUMEN

This study presents two lines of genetic evidence consistent with the premise that CheW, a cytoplasmic component of the chemotactic signaling system of Escherichia coli, interacts directly with Tsr, the membrane-bound serine chemoreceptor. (i) We demonstrated phenotypic suppression between 10 missense mutant CheW proteins and six missense mutant Tsr proteins. Most of these mutant proteins had leaky chemotaxis defects and were partially dominant, implying relatively minor functional alterations. Their suppression pattern was allele specific, suggesting that the mutant proteins have compensatory conformational changes at sites of interactive contact. (ii) We isolated five partially dominant CheW mutations and found that four of them were similar or identical to the suppressible CheW mutant proteins. This implies that there are only a few ways in which CheW function can be altered to produce dominant defects and that dominance is mediated through interactions of CheW with Tsr. The amino acid replacements in these mutant proteins were inferred from their DNA sequence changes. The CheW mutations were located in five regularly spaced clusters in the first two-thirds of the protein. The Tsr mutations were located in a highly conserved region in the middle of the cytoplasmic signaling domain. The hydrophobic moments, overall hydrophobicities, and predicted secondary structures of the mutant segments were consistent with the possibility that they are located at the surface of the CheW and Tsr molecules and represent the contact sites between these two proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores Quimiotácticos/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas de la Membrana/metabolismo , Supresión Genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Factores Quimiotácticos/genética , Quimiotaxis , Escherichia coli/fisiología , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Unión Proteica , Conformación Proteica , Transducción de Señal/fisiología
19.
Trends Genet ; 7(6): 196-200, 1991 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2068793

RESUMEN

Escherichia coli and Salmonella typhimurium invest considerable resources in making flagella, motor organelles that function much like the propellers on a ship. Both classical and molecular genetic studies have begun to reveal how flagellar genes are regulated and how their products build and operate these remarkable devices.


Asunto(s)
Escherichia coli/genética , Flagelos/ultraestructura , Genes Bacterianos/fisiología , Salmonella typhimurium/genética , Movimiento Celular/genética , Escherichia coli/fisiología , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Morfogénesis/genética , Salmonella typhimurium/fisiología
20.
J Bacteriol ; 173(6): 2116-9, 1991 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-2002011

RESUMEN

The cheA locus of Escherichia coli encodes two protein products, CheAL and CheAS. The nucleotide sequences of the wild-type cheA locus and of two nonsense alleles confirmed that both proteins are translated in the same reading frame from different start points. These start sites were located on the coding sequence by direct determination of the amino-terminal sequences of the two CheA proteins. Both starts are flanked by inverted repeats that may play a role in regulating the relative expression rates of the CheA proteins through alternative mRNA secondary structures.


Asunto(s)
Proteínas Bacterianas/genética , Quimiotaxis , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Proteínas de Escherichia coli , Histidina Quinasa , Proteínas Quimiotácticas Aceptoras de Metilo , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Mensajero/genética , Mapeo Restrictivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA