Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1319: 342964, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122287

RESUMEN

Understanding bacterial transport dynamics, particularly at the single-particle level, is crucial across diverse fields from environmental science to biomedical research. In recent times, the emerging impact electrochemistry method offers a transformative approach for detection of bacteria at the single-particle level. The method employs the principle of single-entity electrochemistry to scrutinize electrochemical processes during interaction with the working electrode. In this study, we utilized redox impact electrochemistry to detect bacteria and analyze their transport processes towards the working electrode. Stochastic detection using redox reactions at the ultramicroelectrode enabled the detection of individual bacteria, with collision resulting in a current spike signal due to charge transfer. Notably, the detection of bacteria was demonstrated at an exceptionally low concentration (100 CFU/mL), with recorded current spikes reaching approximately 8.1 nA. Analysis of integrated areas under these spikes unveiled a diverse distribution of charge transfer at the ultramicroelectrode during redox reactions, implying variations in bacterial sizes, collision positions on the electrode surface, and redox activity among bacteria. Remarkably, the average charge transfer per bacterium between E. coli and the electrode was found to be (244 ± 24) pC, underscoring the intrinsic redox activity of the bacteria, equivalent to (2.52 ± 0.25) × 10-15 mol. Additionally, our investigation explored the effects of cell transport mechanisms, including diffusion, migration, convection, and settlement on stochastic interactions of the bacteria at the ultramicroelectrode. Through the collision frequency calculations, we found that migration is the primary factor shaping bacterial transport, with gravitational cell settlement also exerting a significant influence.


Asunto(s)
Técnicas Electroquímicas , Escherichia coli , Oxidación-Reducción , Escherichia coli/aislamiento & purificación , Escherichia coli/química , Técnicas Electroquímicas/métodos , Electrodos
2.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687480

RESUMEN

The tribological properties and preosteoblast behavior of an RF magnetron-sputtered amorphous carbon coating on a Si (100) substrate were evaluated. The graphite target power was varied from 200 to 500 W to obtain various coating structures. The amorphous nature of the coatings was confirmed via Raman analysis. The contact angle also increased from 58º to 103º, which confirmed the transformation of the a-C surface from a hydrophilic to hydrophobic nature with an increasing graphite target power. A minimum wear rate of about 4.73 × 10-8 mm3/N*mm was obtained for an a-C coating deposited at a 300 W target power. The 300 W and 400 W target power coatings possessed good tribological properties, and the 500 W coating possessed better cell viability and adhesion on the substrate. The results suggest that the microstructure, wettability, tribological behavior and biocompatibility of the a-C coating were highly dependent on the target power of the graphite. A Finite Element Analysis (FEA) showed a considerable increase in the Von Mises stress as the mesh size decreased. Considering both the cell viability and tribological properties, the 400 W target power coating was identified to have the best tribological property as well as biocompatibility.

3.
Materials (Basel) ; 16(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37241493

RESUMEN

This report addresses a way to reduce the usage of highly toxic lead in diagnostic X-ray shielding by developing a cost-effective, eco-friendly nano-tungsten trioxide (WO3) epoxy composite for low-weight aprons. Zinc (Zn)-doped WO3 nanoparticles of 20 to 400 nm were synthesized by an inexpensive and scalable chemical acid-precipitation method. The prepared nanoparticles were subjected to X-ray diffraction, Raman spectroscopy, UV-visible spectroscopy, photoluminescence, high-resolution-transmission electron microscope, scanning electron microscope, and the results showed that doping plays a critical role in influencing the physico-chemical properties. The prepared nanoparticles were used as shielding material in this study, which were dispersed in a non-water soluble durable epoxy resin polymer matrix and the dispersed materials were coated over a rexine cloth using the drop-casting method. The X-ray shielding performance was evaluated by estimating the linear attenuation coefficient (µ), mass attenuation coefficient (µm), half value layer (HVL), and X-ray percentage of attenuation. Overall, an improvement in X-ray attenuation in the range of 40-100 kVp was observed for the undoped WO3 nanoparticles and Zn-doped WO3 nanoparticles, which was nearly equal to lead oxide-based aprons (reference material). At 40 kVp, the percentage of attenuation of 2% Zn doped WO3 was 97% which was better than that of other prepared aprons. This study proves that 2% Zn doped WO3 epoxy composite yields a better particle size distribution, µm, and lower HVL value and hence it can be a convenient lead free X-ray shielding apron.

4.
Materials (Basel) ; 15(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499957

RESUMEN

In order to control diesel exhaust emission, CeO2-SnO2/Al2O3 (CTA) mixed oxides were prepared and coated on perforated stainless steel (SS) filter plates, and the catalytic activities were analyzed in this work. The CeO2-SnO2 (different compositions of Ce/Sn-2:8; 1:1; 8:2) composites and Al2O3 were prepared separately via a co-precipitation approach, and CeO2-SnO2/Al2O3 (CTA) mixed oxides were attained by mechanical mixing of 75 wt% CeO2-SnO2 composites with 25 wt% Al2O3. X-ray diffraction (XRD) and Raman spectroscopy were performed for all three CeO2-SnO2/Al2O3 (CTA) mixed oxides; the CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample confirmed the presence of cubic and tetragonal mixed faces, which enhances the redox nature (catalytic activities). Various characterizations such as high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), and a scanning electron microscope (SEM) were employed on CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample to investigate the structural, textural, compositional, and morphological properties. The CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample was coated on a perforated stainless steel (SS) filter plate via a simple, cost-effective, and novel method, and an exhaust emission test for various compression ratios (CR), injection pressure (IP), and load (L) was completed using an AVL Digas analyzer. The CeO2-SnO2/Al2O3 (Ce/Sn-1:1) sample, with a size of 10.22 nm and a high surface area of about 73 m2 g-1, exhibit appreciable catalytic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA