Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285722

RESUMEN

Heterogeneity is omnipresent across all living systems. Diversity enriches the dynamical repertoire of these systems but remains challenging to reconcile with their manifest robustness and dynamical persistence over time, a fundamental feature called resilience. To better understand the mechanism underlying resilience in neural circuits, we considered a nonlinear network model, extracting the relationship between excitability heterogeneity and resilience. To measure resilience, we quantified the number of stationary states of this network, and how they are affected by various control parameters. We analyzed both analytically and numerically gradient and non-gradient systems modeled as non-linear sparse neural networks evolving over long time scales. Our analysis shows that neuronal heterogeneity quenches the number of stationary states while decreasing the susceptibility to bifurcations: a phenomenon known as trivialization. Heterogeneity was found to implement a homeostatic control mechanism enhancing network resilience to changes in network size and connection probability by quenching the system's dynamic volatility.


Asunto(s)
Resiliencia Psicológica , Redes Neurales de la Computación , Neuronas/fisiología , Dinámicas no Lineales
2.
PLoS Comput Biol ; 19(4): e1010736, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104534

RESUMEN

Transcranial alternating current stimulation (tACS) represents a promising non-invasive treatment for an increasingly wide range of neurological and neuropsychiatric disorders. The ability to use periodically oscillating electric fields to non-invasively engage neural dynamics opens up the possibility of recruiting synaptic plasticity and to modulate brain function. However, despite consistent reports about tACS clinical effectiveness, strong state-dependence combined with the ubiquitous heterogeneity of cortical networks collectively results in high outcome variability. Introducing variations in intrinsic neuronal timescales, we explored how such heterogeneity influences stimulation-induced change in synaptic connectivity. We examined how spike timing dependent plasticity, at the level of cells, intra- and inter-laminar cortical networks, can be selectively and preferentially engaged by periodic stimulation. Using leaky integrate-and-fire neuron models, we analyzed cortical circuits comprised of multiple cell-types, alongside superficial multi-layered networks expressing distinct layer-specific timescales. Our results show that mismatch in neuronal timescales within and/or between cells-and the resulting variability in excitability, temporal integration properties and frequency tuning-enables selective and directional control on synaptic connectivity by tACS. Our work provides new vistas on how to recruit neural heterogeneity to guide brain plasticity using non-invasive stimulation paradigms.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Estimulación Transcraneal de Corriente Directa/métodos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Resultado del Tratamiento
3.
Front Syst Neurosci ; 15: 705371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393731

RESUMEN

Synchronization between neuronal populations is hypothesized to play a crucial role in the communication between brain networks. The binding of features, or the association of computations occurring in spatially segregated areas, is supposed to take place when a stable synchronization between cortical areas occurs. While a direct cortico-cortical connection typically fails to support this mechanism, the participation of a third area, a relay element, mediating in the communication was proposed to overcome this limitation. Among the different structures that could play the role of coordination during the binding process, the thalamus is the best placed region to carry out this task. In this paper we study how information flows in a canonical motif that mimics a cortico-thalamo-cortical circuit composed by three mutually coupled neuronal populations (also called the V-motif). Through extensive numerical simulations, we found that the amount of information transferred between the oscillating neuronal populations is determined by the delay in their connections and the mismatch in their oscillation frequencies (detuning). While the transmission from a cortical population is mostly restricted to positive detuning, transmission from the relay (thalamic) population to the cortical populations is robust for a broad range of detuning values, including negative values, while permitting feedback communication from the cortex at high frequencies, thus supporting robust bottom up and top down interaction. In this case, a strong feedback transmission between the cortex to thalamus supports the possibility of robust bottom-up and top-down interactions in this motif. Interestingly, adding a cortico-cortical bidirectional connection to the V-motif (C-motif) expands the dynamics of the system with distinct operation modes. While overall transmission efficiency is decreased, new communication channels establish cortico-thalamo-cortical association loops. Switching between operation modes depends on the synaptic strength of the cortico-cortical connections. Our results support a role of the transthalamic V-motif in the binding of spatially segregated cortical computations, and suggest an important regulatory role of the direct cortico-cortical connection.

4.
PLoS Comput Biol ; 17(4): e1008129, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857135

RESUMEN

Brain networks exhibit very variable and dynamical functional connectivity and flexible configurations of information exchange despite their overall fixed structure. Brain oscillations are hypothesized to underlie time-dependent functional connectivity by periodically changing the excitability of neural populations. In this paper, we investigate the role of the connection delay and the detuning between the natural frequencies of neural populations in the transmission of signals. Based on numerical simulations and analytical arguments, we show that the amount of information transfer between two oscillating neural populations could be determined by their connection delay and the mismatch in their oscillation frequencies. Our results highlight the role of the collective phase response curve of the oscillating neural populations for the efficacy of signal transmission and the quality of the information transfer in brain networks.


Asunto(s)
Encéfalo/fisiología , Conectoma , Modelos Neurológicos , Transducción de Señal
5.
Neuroimage ; 166: 349-359, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29128543

RESUMEN

The emergence of flexible information channels in brain networks is a fundamental question in neuroscience. Understanding the mechanisms of dynamic routing of information would have far-reaching implications in a number of disciplines ranging from biology and medicine to information technologies and engineering. In this work, we show that the presence of a node firing at a higher frequency in a network with local connections, leads to reliable transmission of signals and establishes a preferential direction of information flow. Thus, by raising the firing rate a low degree node can behave as a functional hub, spreading its activity patterns polysynaptically in the network. Therefore, in an otherwise homogeneous and undirected network, firing rate is a tunable parameter that introduces directionality and enhances the reliability of signal transmission. The intrinsic firing rate across neuronal populations may thus determine preferred routes for signal transmission that can be easily controlled by changing the firing rate in specific nodes. We show that the results are generic and the same mechanism works in the networks with more complex topology.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA