Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 345: 123497, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331242

RESUMEN

Mining is of great relevance to the global economy, but its activities are challenging due to socio-environmental impacts. In January 2019, an iron ore tailings dam collapsed in Brumadinho (Minas Gerais, Brazil) releasing 12 × 106 m3 of tailings, causing human losses and devastation around 3.13 × 106 m2 of a watershed. In this context, the present study aimed to investigate the potential toxic effects of tailings from the collapsed dam using earthworms Eisenia andrei as a model organism for terrestrial environments. An extensive set of tests was performed, including behavioral (avoidance), acute (mortality and biomass) and chronic tests, such as biomass, reproduction and cytotoxicity (viability and cell density and change in coelomocyte pattern). The physical-chemical characterization revealed a higher density of the tailings in relation to the control soil, which can result in physical changes, such as soil compaction and surface sealing. Aluminum, Ca, Fe, Hg, Mg, Mn, K, Na and P registered higher concentrations in the tailings compared to the control soil, while Total Nitrogen, Total Organic Carbon and Organic Matter were higher in the natural soil. Based on the avoidance test, an EC50 of 27.18 ± 2.83% was estimated. No lethality was observed in the acute exposure, nor variations in biomass in the acute and chronic assays. However, there was a tendency to reduce the number of juveniles in relation to cocoons in the proportions of 3125; 12.5 and 25%. Significant changes in viability, cell density and pattern of amebocytes and eleocytes were observed up to the 35th day of exposure. A multi-biomarker approach (Integrated Biological Response version 2) indicated concentration-dependent effects and attenuation of cellular changes over time. These are the first results of chronic effects on earthworms exposed to tailings from the B1 dam. Despite being conclusive, we highlight the possible heterogeneity of the tailings and the necessary care in extrapolating the results.


Asunto(s)
Desastres , Oligoquetos , Contaminantes del Suelo , Animales , Humanos , Suelo/química , Minería , Biomarcadores/metabolismo , Brasil , Contaminantes del Suelo/análisis
2.
J Xenobiot ; 14(1): 110-134, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38249104

RESUMEN

In recent decades, the poultry farming industry has assumed a pivotal role in meeting the global demand for affordable animal proteins. While poultry farming makes a substantial contribution to food security and nutrition, it also presents environmental and public health challenges. The use of poultry litter as fertilizer for agricultural soils raises concerns about the transfer of pathogens and drug-resistant microorganisms from poultry farms to crop production areas. On the other hand, according to the Food and Agriculture Organization of the United Nations (FAO), fungicides represent the second most used chemical group in agricultural practices. In this context, agricultural soils receive the application of both poultry litter as a fertilizer and fungicides used in agricultural production. This practice can result in fungal contamination of the soil and the development of antifungal resistance. This article explores the necessity of monitoring antifungal resistance, particularly in food production areas with co-application of poultry litter and fungicides. It also highlights the role of fungi in ecosystems, decomposition, and mutualistic plant associations. We call for interdisciplinary research to comprehensively understand fungal resistance to fungicides in the environment. This approach seeks to promote sustainability in the realms of human health, agriculture, and the environment, aligning seamlessly with the One Health concept.

3.
J Environ Manage ; 351: 119990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183952

RESUMEN

Leachate, an effluent produced during solid waste decomposition, interacts directly with soil, mainly in dumpsite areas. Studies on terrestrial animal exposure to leachate are, however, lacking. Plants are the most frequently studied organisms, while animal studies, especially earthworms, are limited. Nevertheless, ecotoxicological assessments involving earthworms are crucial due to their role in soil health and ecosystem maintenance, which are paramount in understanding potential terrestrial ecosystem leachate effects. In this context, this study aimed to evaluate behavioral effects, sublethal cytotoxicity and antioxidant system alterations in Eisenia andrei earthworms chronically exposed to leachate from a closed dumpsite. Cytotoxicity was determined by coelomocyte density, viability and cell typing, while antioxidant system alterations were assessed through superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH) and metallothionein (MT) determinations. Malondialdehyde (MDA) and protein carbonylation (PTC) levels were also determined as oxidative effect markers. Finally, the Biomarker Response Index (BRI) was assessed, aiming to quantitatively integrate the results of the investigated endpoints and establish a biological health state (BHS) for each leachate concentration. Leachate exposure led to leak responses at concentrations of up to 50%, but attraction at higher concentrations. Decreased cell density (28%) was observed after 48 days and reduced viability (50%), after 14 days of leachate exposure. The observed cell typing changes indicate anti-inflammatory immune system effects. Leachate exposure led to several antioxidant system alterations, increasing SOD (2-6 %), CAT (5-35 %) and GST (5-70 %) activities and GSH (7-37%) and MT (3-67%) levels. Earthworm antioxidant defenses were, however, able to prevent lipid peroxidation, which decreased (11-37%) following leachate exposure to concentrations above 12.5%, and PTC, which increased at 42 days (26%) and reduced at 56 days (12 %). This is the first PTC assessment in leachate-exposed earthworms. The increased carbonylation levels observed after 42 days alongside MDA decreases highlight the need for further research employing oxidative effect biomarkers other than MDA. Finally, an integrated approach employing the BRI was carried out, revealing mild initial changes evolving to moderate to major effects at the highest leachate exposure concentration, with an effect attenuation detected at the end of the experiment. In this sense, this study brings forth a significant novelty, employing a biomarker previously not assessed in earthworms, demonstrating an oxidative effect, alongside the use of the BRI as an integrative tool for the endpoints applied in this assessment.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antioxidantes/metabolismo , Oligoquetos/metabolismo , Estrés Oxidativo , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Superóxido Dismutasa/metabolismo , Suelo , Biomarcadores/metabolismo
4.
Environ Res ; 233: 116435, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331556

RESUMEN

In this study, samples of bromeliad Tillandsia usneoides (n = 70) were transplanted and exposed for 15 and 45 days in 35 outdoor residential areas in Brumadinho (Minas Gerais state, Brazil) after one of the most severe mining dam collapses in the world. Trace elements aluminum (Al), arsenic (As), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni) and zinc (Zn) were quantified by atomic absorption spectrometry. Scanning electron microscope generated surface images of T. usneoides fragments and particulate matter (PM2.5, PM10 and PM > 10). Aluminum, Fe and Mn stood out from the other elements reflecting the regional geological background. Median concentrations in mg kg-1 increased (p < 0.05) between 15 and 45 days for Cr (0.75), Cu (1.23), Fe (474) and Mn (38.1), while Hg (0.18) was higher at 15 days. The exposed-to-control ratio revealed that As and Hg increased 18.1 and 9.4-fold, respectively, not showing a pattern associated only with the most impacted sites. The PM analysis points to a possible influence of the prevailing west wind on the increase of total particles, PM2.5 and PM10 in transplant sites located to the east. Brazilian public health dataset revealed increase in cases of some cardiovascular and respiratory diseases/symptoms in Brumadinho in the year of the dam collapse (1.38 cases per 1000 inhabitants), while Belo Horizonte capital and its metropolitan region recorded 0.97 and 0.37 cases, respectively. Although many studies have been carried out to assess the consequences of the tailings dam failure, until now atmospheric pollution had not yet been evaluated. Furthermore, based on our exploratory analysis of human health dataset, epidemiological studies are required to verify possible risk factors associated with the increase in hospital admissions in the study area.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Metales Pesados , Tillandsia , Oligoelementos , Humanos , Oligoelementos/análisis , Material Particulado/análisis , Tillandsia/química , Brasil , Monitoreo Biológico , Salud Pública , Aluminio , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Cromo/análisis , Mercurio/análisis , Manganeso/análisis , Metales Pesados/análisis
5.
Environ Monit Assess ; 195(1): 243, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576602

RESUMEN

The final disposal of municipal solid waste (MSW) in dumpsites is still a reality worldwide, especially in low- and middle-income countries, leading to leachate-contaminated zones. Therefore, the aim of this study was to carry out soil and leachate physicochemical, microbiological, and toxicological characterizations from a non-operational dumpsite. The L-01 pond samples presented the highest physicochemical parameters, especially chloride (Cl; 4101 ± 44.8 mg L-1), electrical conductivity (EC; 10,452 ± 0.1 mS cm-1), and chemical oxygen demand (COD; 760 ± 6.6 mg L-1) indicating the presence of leachate, explained by its close proximity to the landfill cell. Pond L-03 presented higher parameters compared to pond L-02, except for N-ammoniacal and phosphorus levels, explained by the local geological configuration, configured as a slope from the landfill cell towards L-03. Seven filamentous and/or yeast fungi genera were identified, including the opportunistic pathogenic fungi Candida krusei (4 CFU) in an outcrop sample. Regarding soil samples, Br, Se, and I were present at high concentrations leading to high soil contamination (CF ≤ 6). Pond L-02 presented the highest CF for Br (18.14 ± 18.41 mg kg-1) and I (10.63 ± 3.66 mg kg-1), while pond L-03 presented the highest CF for Se (7.60 ± 1.33 mg kg-1). The most severe lethal effect for Artemia salina was observed for L-03 samples (LC50: 79.91%), while only samples from L-01 were toxic to Danio rerio (LC50: 32.99%). The highest lethality for Eisenia andrei was observed for L-02 samples (LC50: 50.30%). The applied risk characterization indicates high risk of all proposed scenarios for both aquatic (RQ 375-909) and terrestrial environments (RQ > 1.4 × 105). These findings indicate that the investigated dumpsite is contaminated by both leachate and metals, high risks to living organisms and adjacent water resources, also potentially affecting human health.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Residuos Sólidos/análisis , Metales , Instalaciones de Eliminación de Residuos , Suelo
6.
Antibiotics (Basel) ; 11(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421294

RESUMEN

Poultry litter is widely used worldwide as an organic fertilizer in agriculture. However, poultry litter may contain high concentrations of antibiotics and/or antimicrobial-resistant bacteria (ARB), which can be mobilized through soil erosion to water bodies, contributing to the spread of antimicrobial resistance genes (ARGs) in the environment. To better comprehend this kind of mobilization, the bacterial communities of four ponds used for irrigation in agricultural and poultry production areas were determined in two periods of the year: at the beginning (low volume of rainfall) and at the end of the rainy season (high volume of rainfall). 16S rRNA gene sequencing revealed not only significantly different bacterial community structures and compositions among the four ponds but also between the samplings. When the DNA obtained from the water samples was PCR amplified using primers for ARGs, those encoding integrases (intI1) and resistance to sulfonamides (sul1 and sul2) and ß-lactams (blaGES, blaTEM and blaSHV) were detected in three ponds. Moreover, bacterial strains were isolated from CHROMagar plates supplemented with sulfamethoxazole, ceftriaxone or ciprofloxacin and identified as belonging to clinically important Enterobacteriaceae. The results presented here indicate a potential risk of spreading ARB through water resources in agricultural areas with extensive fertilization with poultry litter.

7.
Environ Sci Pollut Res Int ; 29(16): 23607-23618, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34811610

RESUMEN

Poultry litter is widely applied as a fertilizer even though it is one of the main antibiotic sources to agricultural soils. Long-term sublethal effects (56 days) on the antioxidant system of Eisenia andrei earthworms following exposure to fluoroquinolone-contaminated poultry litter (enrofloxacin + ciprofloxacin) at 5.0, 10, and 20 g kg-1 were evaluated. The following biomarkers were assessed: superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH), and a lipid peroxidation (LPO) proxy. Significant CAT and SOD increases, and a moderate positive correlation (ρ = 0.67, p < 0.05) between these enzymes was observed. Glutathione-S-transferase levels increased significantly at 10 g kg-1, while GSH exhibited a dose-dependent response at 5.0 mg kg-1 (4-106%), 10 mg kg-1 (28-330 %), and 20 mg kg-1 (45-472%). LPO levels exhibited a decreasing trend with increasing poultry litter concentrations of 8-170% (5.0 g kg-1), 7-104% (10 mg kg-1), and 3-6% (20 mg kg-1). A principal component analysis (PCA) highlighted increased SOD and CAT activities, possibly due to increased reactive oxygen species (ROS) concentrations. Biological health status assessments based on the biomarker response index indicate major alterations in the first month of exposure and becoming moderate in the second month. These findings indicate an antioxidant system attenuation trend. It is possible, however, that successive poultry litter applications may reduce the long-term recovery capacity of the evaluated biomarkers.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antibacterianos/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Estado de Salud , Peroxidación de Lípido , Oligoquetos/metabolismo , Estrés Oxidativo , Aves de Corral , Contaminantes del Suelo/análisis , Superóxido Dismutasa/metabolismo
8.
Braz J Microbiol ; 52(2): 675-686, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33590447

RESUMEN

Poultry litter is widely applied as agricultural fertilizer and can affect the soil microbiome through nutrient overload and antibiotic contamination. In this study, we assessed changes in soil bacterial diversity using high-throughput sequencing approaches. Four samples in triplicate were studied: soils with short- and long-term fertilization by poultry litter (S1 = 10 months and S2 = 30 years, respectively), a soil inside a poultry shed (S3), and a forest soil used as control (S0). Samples S0, S1, and S2 revealed a relatively high richness, with confirmed operational taxonomic units (OTUs) in the three replicates of each sample ranging from 1243 to 1279, while richness in S3 was about three times lower (466). The most abundant phyla were Proteobacteria, Bacteroidetes, and Actinobacteria. Acidobacteria, Planctomycetes, and Verrucomicrobia were also abundant but highly diminished in S3, while Firmicutes was less abundant in S0. Changes in bacterial communities were very evident at the genera level. The genera Gaiella, Rhodoplanes, Solirubacter, and Sphingomonas were predominant in S0 but strongly decreased in the other soils. Pedobacter and Devosia were the most abundant in S1 and were diminished in S2, while Herbiconiux, Brevundimonas, Proteiniphilum, and Petrimonas were abundant in S2. The most abundant genera in S3 were Deinococcus, Truepera, Rhodanobacter, and Castellaniella. A predictive analysis of the metabolic functions with Tax4Fun2 software suggested the potential presence of enzymes associated with antibiotic resistance as well as with denitrification pathways, indicating that the S3 soil is a potential source of nitrous oxide, a powerful greenhouse gas.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Heces/química , Fertilizantes/análisis , Microbiología del Suelo , Agricultura , Animales , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Filogenia , Aves de Corral , Suelo/química
9.
J Environ Manage ; 285: 112029, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33578208

RESUMEN

Leachate is difficult to biodegrade, and presents variable physical, chemical and biological characteristics, as well as high toxicological potential for soil, groundwater and water bodies. In this context, untreated leachate toxicity was evaluated through acute and chronic exposures in Eisenia andrei earthworms. Physico-chemical leachate characterizations indicate a complex composition, with high organic matter (COD - 10,634 mg L-1) and ammoniacal nitrogen (2388 mg L-1) concentrations. Metals with carcinogenic potential, such as Cr, As and Pb, were present at 0.60, 0.14 and 0.01 µg L-1, respectively and endocrine disrupting compounds were detected in estradiol equivalents of 660 ± 50 ng L-1. Acute tests with Eisenia andrei indicated an LC50 (72 h) of 1.3 ± 0.1 µL cm-2 in a filter paper contact test and 53.9 ± 1.3 mL kg-1 in natural soil (14 days). The EC50 in a behavioral test was estimated as 31.6 ± 6.8 mL kg-1, indicating an escape effect for concentrations ranging from 35.0 to 70.0 mL kg-1 and habitat loss from 87.5 mL kg-1 of leachate exposure. Chronic exposure (56 days) led to reproduction effects, resulting in a 4-fold decreased cocoon production and 7-fold juvenile decrease. This effect was mainly attributed to the possible presence of endocrine disrupting compounds. An estimated NOAEL of 1.7 mL L-1 and LOAEL of 3.5 mL L-1 were estimated for earthworms exposed to the assessed effluent. Extremely high-risk quotients (RQ ≥ 1) were estimated based on leachate application in irrigation. Thus, adequate municipal solid waste management is paramount, especially with regard to generated by-products, which can result in high toxicological risks for terrestrial organisms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Animales , Reproducción , Medición de Riesgo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Ecotoxicol Environ Saf ; 207: 111305, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32942101

RESUMEN

Poultry litter is one of the main sources of fluoroquinolones (FQs) in agricultural soils. In this study, our main goal was to investigate FQ-contaminated poultry litter effects on Eisenia andrei earthworms. To achieve this, acute and chronic tests covered several endpoints, such as avoidance, biomass, lethality, reproduction and changes to immune cells. FQs (enrofloxacin and ciprofloxacin) were determined in a poultry litter sample through high performance liquid chromatography with a fluorescence detector. The avoidance test indicates that poultry litter strongly repels earthworms, even at the lowest concentration (50 g kg-1). In the acute test, the lethal concentration of poultry litter to 50% of the earthworms (LC50), was estimated at 28.5 g kg-1 and a significant biomass loss (p < 0.05) occurred at 40 g kg-1. In the chronic test, a significant reproduction effect was observed at 20 g kg-1. Cell typing, density and feasibility indicated significant effects ranging from 5 to 20 g kg-1. A high risk quotient was estimated based on recommended poultry litter applications in field studies. Although FQ contamination in poultry litter and soils has been widely reported in previous studies, this is, to the best of our knowledge, the first toxicological assessment concerning earthworms exposed to FQ-contaminated poultry litter.


Asunto(s)
Fluoroquinolonas/toxicidad , Oligoquetos/efectos de los fármacos , Aves de Corral , Contaminantes del Suelo/toxicidad , Suelo/química , Residuos Sólidos/análisis , Agricultura , Animales , Biomasa , Fluoroquinolonas/análisis , Dosificación Letal Mediana , Oligoquetos/crecimiento & desarrollo , Reproducción/efectos de la radiación , Contaminantes del Suelo/análisis , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
11.
Environ Res ; 193: 110526, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249035

RESUMEN

On January 2019, the B1 iron ore tailings' dam collapsed in Brumadinho, Brazil, being one of the worst mining-related disasters, with 270 human deaths (11 of them still missing) and 12.106 m3 of tailings released to the environment. The tailings devastated the Córrego do Feijão brook and reached the adjacent Paraopeba River, the region's main watercourse and a major tributary of the São Francisco basin. Although physicochemical parameters of the river were strongly impacted, and acute toxicological effects have been reported from exposure experiments, contamination of aquatic biota had not yet been assessed. Therefore, the aim of this study was to evaluate contamination by trace elements (As, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in sediment, fish and macrophytes along the Paraopeba River, upstream and downstream from the dam failure site, during the dry and wet season. With the exception of Cd and Hg, all elements in sediment samples had lower median concentrations downstream. An inverse pattern was observed for the aquatic biota, with significant higher concentrations of Fe, Mn, Ni and Zn in fishes, and increased concentrations of most elements in macrophytes, indicating an increase in element bioavailability. A significant seasonal variation was observed with increased concentrations of As (dry season) and Pb (wet season) in fish samples, with the same trend occurring in macrophytes. Concentrations of potentially toxic elements in fish samples in wet weight (Cr: 1.80 ± 1.31 mg kg-1, Hg: 0.21 ± 0.11 mg kg-1 and Pb: 0.79 ± 0.80 mg kg-1) were lower than those reported before the disaster. Furthermore, As and Pb concentrations exceeded the safety threshold for fish consumption in 3% and 41% of samples, respectively, representing a matter of concern for public health.


Asunto(s)
Metales Pesados , Colapso de la Estructura , Oligoelementos , Contaminantes Químicos del Agua , Animales , Brasil , Monitoreo del Ambiente , Peces , Sedimentos Geológicos , Humanos , Metales Pesados/análisis , Estaciones del Año , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
12.
J Environ Sci Health B ; 55(12): 1087-1098, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32900284

RESUMEN

Poultry litter soil application contributes to sustainability of agricultural systems and is in accordance with the United Nations Sustainable Development Goals (UN-SDG). Poultry litter recommended rates are based on crop nitrogen (N) needs, however, their application can be a potential source of antibiotics and trace elements overload. The aim of the study was to estimate the role of poultry litter application on soil contamination by fluoroquinolones [enrofloxacin (ENR) and ciprofloxacin (CIP)] and trace elements, based on N requirements for crops. Analytical and sampling techniques were used to estimate the loads from poultry litter application. Only CIP was found in poultry litter samples (283 ± 124 µg kg-1) and its load was estimated to be of 9.89 ± 4.33 g ha-1, for the poultry litter application (35 t ha-1). The estimated loads (g ha-1) of trace elements were: Cr 9.19 ± 3.26, Ni 12.3 ± 4.93, Pb 22.0 ± 8.26, Cu 229 ± 85.6, Mn 691 ± 259 and Zn 1,011 ± 378. These estimates were 900% higher than those recommended by the technical guidance, while N exceeded 600% the recommended application. In order to achieve UN-SDGs, local policies to disseminate knowledge and technologies are required for consolidating sustainable agricultural practices.


Asunto(s)
Fluoroquinolonas/análisis , Estiércol/análisis , Nitrógeno , Aves de Corral , Contaminantes del Suelo/análisis , Oligoelementos/análisis , Agricultura , Animales , Brasil , Ciprofloxacina/análisis , Productos Agrícolas , Enrofloxacina/análisis , Fertilizantes , Suelo/química
13.
Environ Monit Assess ; 191(1): 28, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30591972

RESUMEN

Poultry litter is widely used as fertilizer in soils and can be a relevant source of heavy metals for agricultural environments. In this study, poultry litter fertilization of long-term (< 1-30 years) was evaluated in tropical soils. Our main goal was to investigate the occurrence of temporal variation in the available fraction of heavy metals (Cu, Cr, Zn, Pb, Cd, and Mn) in soils, in addition to their environmental loads through new indexes for risk assessment. The highest mean concentrations in poultry litter were the following: 525 mg kg-1 for Mn, 146 mg kg-1 for Zn, and 94.4 mg kg-1 for Cu. For soils, concentrations were higher for the same heavy metals: Mn (906 mg kg-1), Zn (111 mg kg-1), and Cu (26.3 mg kg-1). Significant accumulation (p < 0.05) in fertilized soils was observed for Cu, Cr, and Zn. The high estimates of poultry litter input based on geological background (LIGB) for Cu, Cr, and Zn coincided with the accumulation observed in soils, confirming the effectiveness of the index. The risk of biogeochemical transfer based on fertilized soils (LIFS) decreased for Cu, Cr, and Zn between 10 and 30 years of soil fertilization. For Mn, a very high LIFS was estimated in all long-term fertilized soils. The proposed indices, based on heavy metal concentration, can be used in risk assessments to guide future studies that analyze other environmental matrices possibly impacted by manure and poultry litter fertilization.


Asunto(s)
Monitoreo del Ambiente/métodos , Fertilizantes/análisis , Estiércol/análisis , Metales Pesados/análisis , Suelo/química , Agricultura , Animales , Brasil , Aves de Corral , Medición de Riesgo , Contaminantes del Suelo/análisis
14.
Chemosphere ; 184: 1261-1269, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28672725

RESUMEN

In this study, pyrethroids were determined in chicken eggs from commercial farm (n = 60) and home egg production (n = 30). These pyrethroids were investigated: bifenthrin, phenothrin, permethrin, cyfluthrin, cypermethrin and fenvalerate, including most diastereomers. Quantification was done using GC-MS in a negative chemical ionization mode. Pyrethroids residues were found in 79% of the analyzed samples. Cypermethrin presented the highest occurrence, being quantified in 62 samples (69%) in concentrations (lipid weight - l w.) varying between 0.29 and 6408 ng g-1, followed by phenothrin (24%), 21-3910 ng g-1, permethrin (14%), 2.96-328 ng g-1, and bifenthrin (11%), 3.77-16.7 ng g-1. Cyfluthrin and fenvalerate were not detected. Home-produced eggs had a higher occurrence of pyrethroids (97%), with a greater predominance of phenothrin. In commercial production, 70% of the samples presented pyrethroid residues (predominantly cypermethrin). This is the first report about the presence of pyrethroids in home-produced eggs and the first description of a selectivity pattern with the predominance of cis diastereomers in chicken eggs. In general, estimated daily intake does not present a risk to human consumption, according to Brazilian and international standards (FAO/WHO). However, one third of the samples (30 eggs) had concentrations above the maximum residue limits (MRLs). The maximum cypermethrin concentration was 66 times the MRL, while the maximum phenothrin concentration was 11 times the limit. Further studies about transfer dynamics, bioaccumulation and metabolic degradation of stereoisomers are required, as well as determining if this selectivity pattern in food can increase consumer's health risk.


Asunto(s)
Huevos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Granjas , Insecticidas/análisis , Piretrinas/análisis , Animales , Brasil , Pollos/metabolismo , Dieta/estadística & datos numéricos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Nitrilos , Permetrina/análisis , Piretrinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA