Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 474: 1-7, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25582303

RESUMEN

Trehalose-6-phosphate is a pivotal regulator of sugar metabolism, growth, and osmotic equilibrium in bacteria, yeasts, and plants. To directly visualize the intracellular levels of intracellular trehalose-6-phosphate, we developed a series of specific Förster resonance energy transfer (FRET) sensors for in vivo microscopy. We demonstrated real-time monitoring of regulation in the trehalose pathway of Escherichia coli. In Saccharomyces cerevisiae, we could show that the concentration of free trehalose-6-phosphate during growth on glucose is in a range sufficient for inhibition of hexokinase. These findings support the hypothesis of trehalose-6-phosphate as the effector of a negative feedback system, similar to the inhibition of hexokinase by glucose-6-phosphate in mammalian cells and controlling glycolytic flux.


Asunto(s)
Técnicas Biosensibles , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Técnicas Genéticas , Saccharomyces cerevisiae/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Proteínas Luminiscentes/metabolismo , Trehalosa/metabolismo
2.
Biomed Res Int ; 2013: 946206, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24024216

RESUMEN

During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands for rapid cell division. One of the crucial alterations is referred to as the "Warburg effect", which involves a metabolic shift from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using standard chemotherapeutic agents could display enhanced efficacy at eradicating malignant cells. The identification of the metabolic enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted therapy of hematological malignancies.


Asunto(s)
Neoplasias Hematológicas/patología , Terapia Molecular Dirigida , Fosforilación Oxidativa , Oxígeno/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , División Celular , Proliferación Celular/efectos de los fármacos , Neoplasias Hematológicas/metabolismo , Humanos , Distribución Tisular
3.
PLoS One ; 6(11): e27789, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22110760

RESUMEN

The Non-structural 1 (NS1) protein of avian influenza (AI) viruses is important for pathogenicity. Here, we identify a previously unrecognized tandem PDZ-ligand (TPL) domain in the extreme carboxy terminus of NS1 proteins from a subset of globally circulating AI viruses. By using protein arrays we have identified several human PDZ-cellular ligands of this novel domain, one of which is the RIL protein, a known regulator of the cellular tyrosine kinase Src. We found that the AI NS1 proteins bind and stimulate human Src tyrosine kinase, through their carboxy terminal Src homology type 3-binding (SHB) domain. The physical interaction between NS1 and Src and the ability of AI viruses to modulate the phosphorylation status of Src during the infection, were found to be influenced by the TPL arrangement. These results indicate the potential for novel host-pathogen interactions mediated by the TPL and SHB domains of AI NS1 protein.


Asunto(s)
Epidemias , Gripe Aviar/virología , Dominios y Motivos de Interacción de Proteínas , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Aves , Línea Celular , Proteínas de Unión al ADN/metabolismo , Humanos , Subtipo H7N1 del Virus de la Influenza A , Proteínas con Dominio LIM/metabolismo , Ligandos , Datos de Secuencia Molecular , Dominios PDZ , Análisis por Matrices de Proteínas , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA