RESUMEN
Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.
Asunto(s)
Microbiota , Poríferos , Animales , Poríferos/microbiología , Regiones Antárticas , Amoníaco , Archaea/genética , Bacterias/genética , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
In the Antarctic Peninsula, increases in mean annual temperature are associated with the coverage and population density of the two Antarctic vascular plant species-Deschampsia antarctica and Colobanthus quitensis-potentially modifying critical soil processes. In this study, we characterized the diversity and community composition of active microorganisms inhabiting the vascular plant rhizosphere in two sites with contrasting vegetation cover in King George Island, Western Antarctic Peninsula. We assessed the interplay between soil physicochemical properties and microbial diversity and composition, evaluating the effect of an in situ experimental warming on the microbial communities of the rhizosphere from D. antarctica and C. quitensis. Bacteria and Eukarya showed different responses to warming in both sites, and the effect was more noticeable in microbial eukaryotes from the low vegetation site. Furthermore, important changes were found in the relative abundance of Tepidisphaerales (Bacteria) and Ciliophora (Eukarya) between warming and control treatments. Our results showed that rhizosphere eukaryal communities are more sensitive to in situ warming than bacterial communities. Overall, our results indicate that vegetation drives the response of the active fraction of the microbial communities from the rhizosphere of Antarctic vascular plants to soil warming.
Asunto(s)
Microbiota , Rizosfera , Suelo , Regiones Antárticas , Microbiología del Suelo , Bacterias/genéticaRESUMEN
Antarctic sponges harbor a diverse range of microorganisms that perform unique metabolic functions for nutrient cycles. Understanding how microorganisms establish functional sponge-microbe interactions in the Antarctic marine ecosystem provides clues about the success of these ancient animals in this realm. Here, we use a culture-dependent approach and genome sequencing to investigate the molecular determinants that promote a dual lifestyle in three bacterial genera Sporosarcina, Cellulophaga, and Nesterenkonia. Phylogenomic analyses showed that four sponge-associated isolates represent putative novel bacterial species within the Sporosarcina and Nesterenkonia genera and that the fifth bacterial isolate corresponds to Cellulophaga algicola. We inferred that isolated sponge-associated bacteria inhabit similarly marine sponges and also seawater. Comparative genomics revealed that these sponge-associated bacteria are enriched in symbiotic lifestyle-related genes. Specific adaptations related to the cold Antarctic environment are features of the bacterial strains isolated here. Furthermore, we showed evidence that the vitamin B5 synthesis-related gene, panE from Nesterenkonia E16_7 and E16_10, was laterally transferred within Actinobacteria members. Together, these findings indicate that the genomes of sponge-associated strains differ from other related genomes based on mechanisms that may contribute to the life in association with sponges and the extreme conditions of the Antarctic environment.
RESUMEN
Year-round reports of phytoplankton dynamics in the West Antarctic Peninsula are rare and mainly limited to microscopy and/or pigment-based studies. We analyzed the phytoplankton community from coastal waters of Fildes Bay in the West Antarctic Peninsula between January 2014 and 2015 using metabarcoding of the nuclear and plastidial 18/16S rRNA gene from both size-fractionated and flow cytometry sorted samples. Overall 14 classes of photosynthetic eukaryotes were present in our samples with the following dominating: Bacillariophyta (diatoms), Pelagophyceae and Dictyochophyceae for division Ochrophyta, Mamiellophyceae and Pyramimonadophyceae for division Chlorophyta, Haptophyta and Cryptophyta. Each metabarcoding approach yielded a different image of the phytoplankton community with for example Prymnesiophyceae more prevalent in plastidial metabarcodes and Mamiellophyceae in nuclear ones. Diatoms were dominant in the larger size fractions and during summer, while Prymnesiophyceae and Cryptophyceae were dominant in colder seasons. Pelagophyceae were particularly abundant towards the end of autumn (May). In addition of Micromonas polaris and Micromonas sp. clade B3, both previously reported in Arctic waters, we detected a new Micromonas 18S rRNA sequence signature, close to, but clearly distinct from M. polaris, which potentially represents a new clade specific of the Antarctic. These results highlight the need for complementary strategies as well as the importance of year-round monitoring for a comprehensive description of phytoplankton communities in Antarctic coastal waters.
Asunto(s)
Bahías/microbiología , Biodiversidad , Fitoplancton , Estaciones del Año , Regiones Antárticas , Fitoplancton/clasificación , Fitoplancton/genética , Fitoplancton/crecimiento & desarrollo , ARN Ribosómico 16S/genéticaRESUMEN
Sponge-associated microorganisms are essential for sponge survival. They play an important role in recycling nutrients and, therefore, in the maintenance of the ecosystem. These microorganisms are diverse, species-specific, and different from those in the surrounding seawater. Bacterial sponge symbionts have been extensively studied in the tropics; however, little is known about these microorganisms in sponges from high-latitude environments. Sponges can cover up to 80% of the benthos in Antarctica and are crucial architects for the marine food web. In this study, we present analyses of the bacterial symbionts of three sponges: Haliclona (Rhizoniera) sp., Hymeniacidon torquata, and Isodictya kerguelenensis from the Western Antarctic Peninsula (WAP) with the aim to determine variations on the specificity of the bacteria-sponge interactions and potential signatures on their predicted functional profiles. We use high-throughput 16S rRNA gene sequencing of 30 sponge individuals inhabiting South Bay (Palmer Archipelago, WAP) to describe their microbiome taxonomy and diversity and predict potential functional profiles based on this marker gene. Our work shows similar bacterial community composition profiles among the same sponge species, although the symbiotic relationship is not equally conserved among the three Antarctic sponges. The number of species-specific core operational taxonomic units (OTUs) of these Antarctic sponges was low, with important differences between the total abundance accounted for these OTUs. Only eight OTUs were shared between the three sponge species. Analyses of the functional potential revealed that despite the high host-symbiont specificity, the inferred functions are conserved among these microbiomes, although with differences in the abundance of specific functions. H. torquata showed the highest level of intra-specificity and a higher potential of pathways related to energy metabolism, metabolisms of terpenoids and polyketides, and biosynthesis of other secondary metabolites. Overall, this work shows variations in the specificity of the sponge-associated bacterial communities, differences in how hosts and symbionts establish their relations, and in their potential functional capabilities.