Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687531

RESUMEN

This paper reports a method for the fabrication of mineral-like SrMoO4 ceramics with a powellite structure, which is promising for the immobilization of the high-energy 90Sr radioisotope. The reported method is based on the solid-phase "in situ" interaction between SrO and MoO3 oxides initiated under spark plasma sintering (SPS) conditions. Dilatometry, XRD, SEM, and EDX methods were used to investigate the consolidation dynamics, phase formation, and structural changes in the reactive powder blend and sintered ceramics. The temperature conditions for SrMoO4 formation under SPS were determined, yielding ceramics with a relative density of 84.0-96.3%, Vickers microhardness of 157-295 HV, and compressive strength of 54-331 MPa. Ceramic samples demonstrate a low Sr leaching rate of 10-6 g/cm2·day, indicating a rather high hydrolytic stability and meeting the requirements of GOST R 50926-96 imposed on solid radioactive wastes. The results presented here show a wide range of prospects for the application of ceramic matrixes with the mineral-like composition studied here to radioactive waste processing and radioisotope manufacturing.

2.
Biomimetics (Basel) ; 8(3)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37504188

RESUMEN

The paper presents an original approach to the synthesis of polycalciumorganyl silsesquioxanes through the reaction of polyorganyl silsesquioxanes [RSiO1.5]n (where R is an ethyl and phenyl radical) with sea urchin skeleton under the conditions of mechanochemical activation. The novelty and practical significance of the present study lies in the use of an available natural raw source as a source of calcium ions to initiate the reaction of calcium silicate formation and create a matrix for the formation of a porous inorganic composite framework. The thermal stability of the introduced silicates, i.e., the ability to maintain a porous structure at high temperatures, is key to the production of an ordered porous material. The reaction scheme was proposed to be based on the interaction of calcium carbonate with the siloxane bond. FTIR, XRD, GPC, and TGA were used to study the composition and structure of the obtained materials. The cross-sectional area of the polymer chain and the volumes of the coherent scattering regions of the polymers obtained were calculated from the XRD data. To prepare the composites, the sea urchin skeleton was further modified with polycalciumorganyl silsesquioxanes in a toluene solution. To remove the sea urchin skeleton, the obtained biomimetic composites were treated with hydrochloric acid. The results of the morphological and surface composition studies are reported. The method proposed in the paper could be of fundamental importance for the possibility of obtaining structured porous composite materials for a wide range of practical applications, including for the purpose of creating a composite that may be a promising carrier for targeted delivery of chemotherapy agents.

3.
Materials (Basel) ; 16(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37176377

RESUMEN

Synthetic calcium silicates and phosphates are promising compounds for targeted drug delivery for the effective treatment of cancerous tumors, and for minimizing toxic effects on the patient's entire body. This work presents an original synthesis of a composite based on crystalline wollastonite CaSiO3 and combeite Na4Ca4(Si6O18), using a sea urchin Mesocentrotus nudus skeleton by microwave heating under hydrothermal conditions. The phase and elemental composition and structure of the obtained composite were studied by XRF, REM, BET, and EDS methods, depending on the microwave heating time of 30 or 60 min, respectively, and the influence of thermo-oxidative post-treatment of samples. The role of the sea urchin skeleton in the synthesis was shown. First, it provides a raw material base (source of Ca2+) for the formation of the calcium silicate composite. Second, it is a matrix for the formation of its porous inorganic framework. The sorption capacity of the composite, with respect to 5-fluorouracil, was estimated, the value of which was 12.3 mg/L. The resulting composite is a promising carrier for the targeted delivery of chemotherapeutic drugs. The mechanism of drug release from an inorganic natural matrix was also evaluated by fitting its release profile to various mathematical models.

4.
J Funct Biomater ; 14(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37233369

RESUMEN

Reconstructive and regenerative bone surgery is based on the use of high-tech biocompatible implants needed to restore the functions of the musculoskeletal system of patients. Ti6Al4V is one of the most widely used titanium alloys for a variety of applications where low density and excellent corrosion resistance are required, including biomechanical applications (implants and prostheses). Calcium silicate or wollastonite (CaSiO3) and calcium hydroxyapatite (HAp) is a bioceramic material used in biomedicine due to its bioactive properties, which can potentially be used for bone repair. In this regard, the research investigates the possibility of using spark plasma sintering technology to obtain new CaSiO3-HAp biocomposite ceramics reinforced with a Ti6Al4V titanium alloy matrix obtained by additive manufacturing. The phase and elemental compositions, structure, and morphology of the initial CaSiO3-HAp powder and its ceramic metal biocomposite were studied by X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis methods. The spark plasma sintering technology was shown to be efficient for the consolidation of CaSiO3-HAp powder in volume with a Ti6Al4V reinforcing matrix to obtain a ceramic metal biocomposite of an integral form. Vickers microhardness values were determined for the alloy and bioceramics (~500 and 560 HV, respectively), as well as for their interface area (~640 HV). An assessment of the critical stress intensity factor KIc (crack resistance) was performed. The research result is new and represents a prospect for the creation of high-tech implant products for regenerative bone surgery.

5.
Environ Sci Pollut Res Int ; 29(50): 75989-76002, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35665888

RESUMEN

The environmental pollution by toxic Co(II) ions had a negative impact on living organisms and water resources. The amorphous Zr-Ca-Mg and Ti-Ca-Mg phosphates with varied Zr and Ti content with the mesoporous structure (ABET = 19-232 m2/g, Vdes. = 0.075-0.370 cm3/g, Ddes. = 6.2-10.9 nm) were synthesized. The effect of adsorbent chemical composition, the presence of competing ions (0.1-1.0 M NaCl and 0.01-0.1 M CaCl2 backgrounds), and pH (3.0-7.0) of aqueous solution on adsorption removal of Co(II) ions by Zr-Ca-Mg and Ti-Ca-Mg phosphates was studied. The highest adsorption capacity of Zr-Ca-Mg-1 and Ti-Ca-Mg-1 samples reached 253.3 and 212.8 mg/g. The prepared adsorbents demonstrated high efficiency at pH in the range of 3.0-7.0 and the presence of 0.1-1.0 M NaCl and seawater with a salinity of 35.0 g/L backgrounds. The chemisorption and ion-exchange mechanisms of Co(II) ions removal for Zr-Ca-Mg and Ti-Ca-Mg phosphates were proposed. The adsorption isotherms were well fitted with Sips and Langmuir models that proved the heterogeneous nature of adsorption sites as well as assumed the monolayer adsorption that occurs at specific homogeneous sites within the adsorbent without any interaction between the adsorbed substances. The kinetic data was well described by the pseudo-second-order model that is suitable for chemisorption processes as liming adsorption stage. The presented results shown the prospects of developed adsorbents for the investigation of real wastewater treatment from heavy metal ions and liquid radioactive waste purification.


Asunto(s)
Metales Pesados , Residuos Radiactivos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cloruro de Calcio , Concentración de Iones de Hidrógeno , Iones , Cinética , Fosfatos/química , Cloruro de Sodio , Titanio , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
6.
Materials (Basel) ; 15(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35329505

RESUMEN

To obtain a deeper understand of the energy transfer mechanism between Ce3+ and Tb3+ ions in the aluminum garnet hosts, (Ce, Tb, Gd)3Ga2Al3O12 (GGAG:Ce, Tb) single crystals grown by the optical floating zone (OFZ) method were investigated systematically in a wide range of Tb3+ doping concentration (1-66 at.%). Among those, crystal with 7 at.% Tb reached a single garnet phase while the crystals with other Tb3+ concentrations are mixed phases of garnet and perovskite. Obvious Ce and Ga loss can be observed by an energy dispersive X-ray spectroscope (EDS) technology. The absorption bands belonging to both Ce3+ and Tb3+ ions can be observed in all crystals. Photoluminescence (PL) spectra show the presence of an efficient energy transfer from the Tb3+ to Ce3+ and the gradually quenching effect with increasing of Tb3+ concentration. GGAG: 1% Ce3+, 7% Tb3+ crystal was found to possess the highest PL intensity under excitation of 450 nm. The maximum light yield (LY) reaches 18,941 pho/MeV. The improved luminescent and scintillation characteristics indicate that the cation engineering of Tb3+ can optimize the photoconversion performance of GGAG:Ce.

7.
J Funct Biomater ; 11(4)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977458

RESUMEN

The study describes the influence of synthetic CaSiO3/HAp powder biocomposite on the process of regeneration in osseous tissue in the alveolar ridges in terms of the morphological characteristics of the osteoplastic potential. The authors investigated the osteoinduction and osteoconduction "in vivo" processes during bone tissue regeneration in the mandible defect area of an experimental animal (rabbit). The possibility of angiogenesis in the graft as an adaptation factor was studied in the process of bone tissue regeneration. The results of the histological study that included the qualitative parameters of bone tissue regeneration, the morphometric parameters (microarchitectonics) of the bone, the parameters of osteosynthesis (thickness of the osteoid plates), and resorption (volume density of the eroded surface) were presented. The results allowed the authors to characterize the possibility of the practical adaptation for synthetic powder biocomposite as an osteoplastic graft for the rehabilitation of osseous defects in dentistry.

8.
J Funct Biomater ; 11(2)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545491

RESUMEN

The article presents an original way of getting porous and mechanically strong CaSiO3-HAp ceramics, which is highly desirable for bone-ceramic implants in bone restoration surgery. The method combines wet and solid-phase approaches of inorganic synthesis: sol-gel (template) technology to produce the amorphous xonotlite (Ca6Si6O17·2OH) as the raw material, followed by its spark plasma sintering-reactive synthesis (SPS-RS) into ceramics. Formation of both crystalline wollastonite (CaSiO3) and hydroxyapatite (Ca10(PO4)6(OH)2) occurs "in situ" under SPS conditions, which is the main novelty of the method, due to combining the solid-phase transitions of the amorphous xonotlite with the chemical reaction within the powder mixture between CaO and CaHPO4. Formation of pristine HAp and its composite derivative with wollastonite was studied by means of TGA and XRD with the temperatures of the "in situ" interactions also determined. A facile route to tailor a macroporous structure is suggested, with polymer (siloxane-acrylate latex) and carbon (fibers and powder) fillers being used as the pore-forming templates. Microbial tests were carried out to reveal the morphological features of the bacterial film Pseudomonas aeruginosa that formed on the surface of the ceramics, depending on the content of HAp (0, 20, and 50 wt%).

9.
J Hazard Mater ; 363: 233-241, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30308362

RESUMEN

Hydrothermal oxidation, a promising method for removal of cobalt radionuclides from EDTA-containing liquid radioactive waste streams, is in the focus of the present study. It has been demonstrated that Co(III)-EDTA complexes, which are very stable under normal conditions, undergo oxidation as a result of the electron transfer from the EDTA carboxyl group to Co(III) ions under elevated temperature. The electron transfer reaction follows the first-order rate law with an activation energy of 91.8 kJ/mol at рH 12 and time of Co(III) ions half-conversion of 0.2 s at 200 °C. The rate of EDTA oxidation is proportional to the concentration of Co(III) ions and solution pH. Based on quantum chemistry simulations, possible intermediate structures formed upon the electron transfer from EDTA to Co(III) ions have been suggested. It has been shown that the introduction of hydrogen peroxide provides a continuous generation of Co(III) ions and a sequential decarboxylation of the EDTA until complete degradation of the chelate structure. The pathways of cobalt immobilization have been clarified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA