Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1733: 465219, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39178656

RESUMEN

Per- and polyfluoroalkyl substances (PFAS), in the polymeric form, have been used extensively in functional textiles, including firefighter's turnout gear (e.g., jackets and pants), where PFAS are applied to confer oil and water resistance. However, growing concerns over the persistence, potential toxicity, and environmental impact of PFAS have prompted a thorough assessment of potential exposure pathways. Here, we report the emission of PFAS from three firefighter turnout gear jackets at 38 °C. Volatile emissions from the three layers (outer layer, moisture barrier, and thermal liner) were collected onto sorbent tubes via dynamic headspace sampling using a micro-scale chamber device kept at 38 °C for one hour. The emission was characterized using thermal desorption (TD) coupled to two-dimensional gas chromatography - time-of-flight mass spectrometry (GC×GC-TOF MS). The enhanced separation capacity of GC×GC was essential due to the high number of compounds present in each sample, especially for the fabrics from used turnout gear jackets. Based on the filtering expressions, including two-dimensional retention time (1tr and 2tr) and PFAS diagnostic fragment ions (m/z 69, 95, and 131), fluorotelomer alcohols (FTOHs) and fluorotelomer acrylates were identified using standards and spectral matching with the NIST database. After conducting a non-targeted tile-based workflow, jackets (both used and unused) and layers were compared, resulting in the identification of the top 15 discriminating features from over 400 chromatographic peaks. Finally, preliminary FTOH emission experiments showed some usage and layers trends that are aligned with those reported using solvent extraction. Highest levels of FTOHs were found in the moisture barrier, followed by the outer layer and the thermal liner. Older jackets emitted higher levels of 8:2 FTOH and 10:2 FTOH than a newer jacket. In contrast, a newer jacket used for one year had emissions containing higher levels of 6:2 FTOH. Investigating routes of exposure and identifying new PFAS targets are critical steps in evaluating the environmental and health impacts of these persistent chemicals.


Asunto(s)
Fluorocarburos , Cromatografía de Gases y Espectrometría de Masas , Textiles , Textiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Fluorocarburos/análisis , Fluorocarburos/química
2.
Environ Res ; 239(Pt 1): 117306, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797669

RESUMEN

Firefighters experience exposures to carcinogenic and mutagenic substances, including polycyclic aromatic hydrocarbons (PAHs). Silicone wristbands (SWBs) have been used as passive samplers to assess firefighters' exposures over the course of a shift but their utility in measuring short term exposures, source of exposure, and correlations with other measurements of exposure have not yet been investigated. In this study, SWBs were used to measure the concentrations of 16 priority PAHs inside and outside of firefighters' personal protective equipment (PPE) while firefighting. SWBs were placed on the wrist and jacket of 20 firefighters conducting live fire training. Correlations were made with matching data from a sister project that measured urinary concentrations of PAH metabolites and PAH concentrations from personal air samples from the same participants. Naphthalene, acenaphthylene and phenanthrene had the highest geometric mean concentrations in both jacket and wrist SWB, with 1040, 320, 180 ng/g SWB for jacket and 55.0, 4.9, and 6.0 ng/g SWB for wrist, respectively. Ratios of concentrations between the jacket and wrist SWBs were calculated as worker protection factors (WPFs) and averaged 40.1 for total PAHs and ranged from 2.8 to 214 for individual PAHs, similar to previous studies. Several significant correlations were observed between PAHs in jacket SWBs and air samples (e.g., total and low molecular weight PAHs, r = 0.55 and 0.59, p < 0.05, respectively). A few correlations were found between PAHs from SWBs worn on the wrist and jacket, and urinary concentrations of PAH metabolites and PAH concentrations in air samples. The ability of the SWBs to accurately capture exposures to various PAHs was likely influenced by short sampling time, high temperatures, and high turbulence. Future work should further examine the limitations of SWBs for PAH exposures in firefighting, and other extreme environments.


Asunto(s)
Bomberos , Hidrocarburos Policíclicos Aromáticos , Humanos , Carcinógenos , Mutágenos , Equipo de Protección Personal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA