Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Neural Netw ; 5(5): 712-8, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-18267845

RESUMEN

Underwater acoustic transients can develop from a wide variety of sources. Accordingly, detection and classification of such transients by automated means can be exceedingly difficult. This paper describes a new approach to this problem based on adaptive pattern recognition employing neural networks and an alternative metric, the Hausdorff metric. The system uses self-organization to both generalize and provide rapid throughput while utilizing supervised learning for decision making, being based on a concept that temporally partitions acoustic transient signals, and as a result, studies their trajectories through power spectral density space. This method has exhibited encouraging results for a large set of simulated underwater transients contained in both quiet and noisy ocean environments, and requires from five to ten MFLOPS for the implementation described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA