Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 10: 634-643, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931205

RESUMEN

The present study aims to see the enhancement in thermoelectric properties of bismuth telluride (Bi2Te3) annealed at different temperatures (573 and 773 K) through silver (Ag) nano-inclusions (0, 2, 5, 10, 15 and 20 wt %). Transmission electron microscopy (TEM) images of Ag incorporated in Bi2Te3 annealed at 573 K shows tubular, pentagonal, trigonal, circular and hexagonal nanoparticles with sizes of 6-25 nm (for 5 wt % Ag ) and 7-30 nm (for 20 wt % Ag). Ag incorporated in Bi2Te3 annealed at 773 K shows mainly hexagonally shaped structures with particle sizes of 2-20 nm and 40-80 nm (for 5 wt % Ag) and 10-60 nm (for 20 wt % Ag). Interestingly, the samples annealed at 573 K show the highest Seebeck coefficient (S, also called thermopower) at room temperature (p-type behavior) for 5% Ag which is increased ca. five-fold in comparison to Ag-free Bi2Te3, whereas for samples with the same content (5% Ag) annealed at 773 K the increment in thermopower is only about three-fold with a 6.9-fold enhancement of the power factor (S 2σ). The effect of size and shape of the nanoparticles on thermoelectric properties can be understood on the basis of a carrier-filtering effect that results in an increase in thermopower along with a control over the reduction in electrical conductivity to maintain a high power factor yielding a high figure of merit.

2.
ACS Appl Mater Interfaces ; 6(11): 8531-41, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24824342

RESUMEN

The effect of hydrogen plasma treatment on the electrical conductivity and electron field emission (EFE) properties for diamond nanowire (DNW) films were systematically investigated. The DNW films were deposited on silicon substrate by N2-based microwave plasma-enhanced chemical vapor deposition process. Transmission electron microscopy depicted that DNW films mainly consist of wirelike diamond nanocrystals encased in a nanographitic sheath, which formed conduction channels for efficient electron transport and hence lead to excellent electrical conductivity and EFE properties for these films. Hydrogen plasma treatment initially enhanced the electrical conductivity and EFE properties of DNW films and then degraded with an increase in treatment time. Scanning tunneling spectroscopy in current imaging tunneling spectroscopy mode clearly shows significant increase in local emission sites in 10 min hydrogen plasma treated diamond nanowire (DNW10) films as compared to the pristine films that is ascribed to the formation of graphitic phase around the DNWs due to the hydrogen plasma treatment process. The degradation in EFE properties of extended (15 min) hydrogen plasma-treated DNW films was explained by the removal of nanographitic phase surrounding the DNWs. The EFE process of DNW10 films can be turned on at a low field of 4.2 V/µm and achieved a high EFE current density of 5.1 mA/cm(2) at an applied field of 8.5 V/µm. Moreover, DNW10 films with high electrical conductivity of 216 (Ω cm)(-1) overwhelm that of other kinds of UNCD films and will create a remarkable impact to diamond-based electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA