Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 11644, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078972

RESUMEN

Sunflower Verticillium Wilt and Leaf Mottle (SVW), caused by Verticillium dahliae (Kleb.; Vd), is a soil-borne disease affecting sunflower worldwide. A single dominant locus, known as V1, was formerly effective in controlling North-American Vd races, whereas races from Argentina, Europe and an emerging race from USA overcome its resistance. This emphasizes the need for identifying broad-spectrum genetic resistance (BSR) sources. Here we characterize two sunflower mapping populations (MPs) for SVW resistance: a biparental MP and the association MP from the National Institute of Agricultural Technology (INTA), under field growing conditions. Nine field-trials (FTs) were conducted in highly infested fields in the most SVW-affected region of Argentina. Several disease descriptors (DDs), including incidence and severity, were scored across four phenological stages. Generalized linear models were fitted according to the nature of each variable, adjusting mean phenotypes for inbred lines across and within FTs. Comparison of these responses allowed the identification of novel BSR sources. Furthermore, we present the first report of SVW resistance heritability, with estimates ranging from 35 to 45% for DDs related to disease incidence and severity, respectively. This study constitutes the largest SVW resistance characterization reported to date in sunflower, identifying valuable genetic resources for BSR-breeding to cope with a pathogen of increasing importance worldwide.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Genoma de Planta , Helianthus/genética , Enfermedades de las Plantas/genética , Argentina , Mapeo Cromosómico , Helianthus/inmunología , Helianthus/microbiología , Fenotipo , Fitomejoramiento/métodos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Sitios de Carácter Cuantitativo
2.
Sci Rep ; 10(1): 13347, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770047

RESUMEN

Sclerotinia head rot (SHR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating sunflower crop diseases. Despite its worldwide occurrence, the genetic determinants of plant resistance are still largely unknown. Here, we investigated the Sclerotinia-sunflower pathosystem by analysing temporal changes in gene expression in one susceptible and two tolerant inbred lines (IL) inoculated with the pathogen under field conditions. Differential expression analysis showed little overlapping among ILs, suggesting genotype-specific control of cell defense responses possibly related to differences in disease resistance strategies. Functional enrichment assessments yielded a similar pattern. However, all three ILs altered the expression of genes involved in the cellular redox state and cell wall remodeling, in agreement with current knowledge about the initiation of plant immune responses. Remarkably, the over-representation of long non-coding RNAs (lncRNA) was another common feature among ILs. Our findings highlight the diversity of transcriptional responses to SHR within sunflower breeding lines and provide evidence of lncRNAs playing a significant role at early stages of defense.


Asunto(s)
Ascomicetos/genética , Helianthus/microbiología , Enfermedades de las Plantas/microbiología , Cruzamiento/métodos , Pared Celular/microbiología , Resistencia a la Enfermedad , Expresión Génica/genética , Genotipo , Oxidación-Reducción , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética
3.
Genes (Basel) ; 11(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155892

RESUMEN

Sunflower germplasm collections are valuable resources for broadening the genetic base of commercial hybrids and ameliorate the risk of climate events. Nowadays, the most studied worldwide sunflower pre-breeding collections belong to INTA (Argentina), INRA (France), and USDA-UBC (United States of America-Canada). In this work, we assess the amount and distribution of genetic diversity (GD) available within and between these collections to estimate the distribution pattern of global diversity. A mixed genotyping strategy was implemented, by combining proprietary genotyping-by-sequencing data with public whole-genome-sequencing data, to generate an integrative 11,834-common single nucleotide polymorphism matrix including the three breeding collections. In general, the GD estimates obtained were moderate. An analysis of molecular variance provided evidence of population structure between breeding collections. However, the optimal number of subpopulations, studied via discriminant analysis of principal components (K = 12), the bayesian STRUCTURE algorithm (K = 6) and distance-based methods (K = 9) remains unclear, since no single unifying characteristic is apparent for any of the inferred groups. Different overall patterns of linkage disequilibrium (LD) were observed across chromosomes, with Chr10, Chr17, Chr5, and Chr2 showing the highest LD. This work represents the largest and most comprehensive inter-breeding collection analysis of genomic diversity for cultivated sunflower conducted to date.


Asunto(s)
Helianthus/genética , Desequilibrio de Ligamiento , Polimorfismo Genético , Banco de Semillas , Cromosomas de las Plantas/genética , Fitomejoramiento/métodos
4.
PLoS One ; 13(12): e0203768, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532149

RESUMEN

The endangered Cedrela balansae C.DC. (Meliaceae) is a high-value timber species with great potential for forest plantations that inhabits the tropical forests in Northwestern Argentina.Research on this species is scarce because of the limited genetic and genomic information available. Here, we explored the transcriptome of C. balansae using 454 GS FLX Titanium next-generation sequencing (NGS) technology. Following de novo assembling, we identified 27,111 non-redundant unigenes longer than 200 bp, and considered these transcripts for further downstream analysis. The functional annotation was performed searching the 27,111 unigenes against the NR-Protein and the Interproscan databases. This analysis revealed 26,977 genes with homology in at least one of the Database analyzed. Furthermore, 7,774 unigenes in 142 different active biological pathways in C. balansae were identified with the KEGG database. Moreover, after in silico analyses, we detected 2,663 simple sequence repeats (SSRs) markers. A subset of 70 SSRs related to important "stress tolerance" traits based on functional annotation evidence, were selected for wet PCR-validation in C. balansae and other Cedrela species inhabiting in northwest and northeast of Argentina (C. fissilis, C. saltensis and C. angustifolia). Successful transferability was between 77% and 93% and thanks to this study, 32 polymorphic functional SSRs for all analyzed Cedrela species are now available. The gene catalog and molecular markers obtained here represent a starting point for further research, which will assist genetic breeding programs in the Cedrela genus and will contribute to identifying key populations for its preservation.


Asunto(s)
Cedrela/genética , Simulación por Computador , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/fisiología , Argentina , Cedrela/crecimiento & desarrollo , Marcadores Genéticos
5.
BMC Plant Biol ; 15: 52, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25848813

RESUMEN

BACKGROUND: Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated. RESULTS: The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation. CONCLUSION: The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent estimations of genetic diversity and population structure in sunflower breeding materials. The generated knowledge about the levels of diversity and population structure of sunflower germplasm is an important contribution to this crop breeding and conservation.


Asunto(s)
Etiquetas de Secuencia Expresada , Variación Genética , Genética de Población , Helianthus/genética , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Argentina , Teorema de Bayes , Análisis Multivariante , Fitomejoramiento , Polimorfismo Genético
6.
PLoS One ; 9(8): e104379, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25110882

RESUMEN

Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important roles as potential triggers of leaf senescence and thus can be considered putative candidate genes for senescence in sunflower.


Asunto(s)
Perfilación de la Expresión Génica , Helianthus/crecimiento & desarrollo , Helianthus/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Metabolismo de los Hidratos de Carbono/genética , Clorofila/metabolismo , Genómica , Helianthus/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Solubilidad , Factores de Tiempo , Factores de Transcripción/genética
7.
BMC Genomics ; 14: 705, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24125525

RESUMEN

BACKGROUND: Prosopis alba (Fabaceae) is an important native tree adapted to arid and semiarid regions of north-western Argentina which is of great value as multipurpose species. Despite its importance, the genomic resources currently available for the entire Prosopis genus are still limited. Here we describe the development of a leaf transcriptome and the identification of new molecular markers that could support functional genetic studies in natural and domesticated populations of this genus. RESULTS: Next generation DNA pyrosequencing technology applied to P. alba transcripts produced a total of 1,103,231 raw reads with an average length of 421 bp. De novo assembling generated a set of 15,814 isotigs and 71,101 non-assembled sequences (singletons) with an average of 991 bp and 288 bp respectively. A total of 39,000 unique singletons were identified after clustering natural and artificial duplicates from pyrosequencing reads.Regarding the non-redundant sequences or unigenes, 22,095 out of 54,814 were successfully annotated with Gene Ontology terms. Moreover, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 5,992 and 6,236 markers, respectively, throughout the genome. For the validation of the the predicted SSR markers, a subset of 87 SSRs selected through functional annotation evidence was successfully amplified from six DNA samples of seedlings. From this analysis, 11 of these 87 SSRs were identified as polymorphic. Additionally, another set of 123 nuclear polymorphic SSRs were determined in silico, of which 50% have the probability of being effectively polymorphic. CONCLUSIONS: This study generated a successful global analysis of the P. alba leaf transcriptome after bioinformatic and wet laboratory validations of RNA-Seq data.The limited set of molecular markers currently available will be significantly increased with the thousands of new markers that were identified in this study. This information will strongly contribute to genomics resources for P. alba functional analysis and genetics. Finally, it will also potentially contribute to the development of population-based genome studies in the genera.


Asunto(s)
Hojas de la Planta/genética , Prosopis/genética , Transcriptoma , Cloroplastos/genética , Frecuencia de los Genes , Ontología de Genes , Genes de Plantas , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Redes y Vías Metabólicas/genética , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Prosopis/metabolismo , Análisis de Secuencia de ADN
8.
BMC Genomics ; 13: 291, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747958

RESUMEN

BACKGROUND: Nothofagus nervosa is one of the most emblematic native tree species of Patagonian temperate forests. Here, the shotgun RNA-sequencing (RNA-Seq) of the transcriptome of N. nervosa, including de novo assembly, functional annotation, and in silico discovery of potential molecular markers to support population and associations genetic studies, are described. RESULTS: Pyrosequencing of a young leaf cDNA library generated a total of 111,814 high quality reads, with an average length of 447 bp. De novo assembly using Newbler resulted into 3,005 tentative isotigs (including alternative transcripts). The non-assembled sequences (singletons) were clustered with CD-HIT-454 to identify natural and artificial duplicates from pyrosequencing reads, leading to 21,881 unique singletons. 15,497 out of 24,886 non-redundant sequences or unigenes, were successfully annotated against a plant protein database. A substantial number of simple sequence repeat markers (SSRs) were discovered in the assembled and annotated sequences. More than 40% of the SSR sequences were inside ORF sequences. To confirm the validity of these predicted markers, a subset of 73 SSRs selected through functional annotation evidences were successfully amplified from six seedlings DNA samples, being 14 polymorphic. CONCLUSIONS: This paper is the first report that shows a highly precise representation of the mRNAs diversity present in young leaves of a native South American tree, N. nervosa, as well as its in silico deduced putative functionality. The reported Nothofagus transcriptome sequences represent a unique resource for genetic studies and provide a tool to discover genes of interest and genetic markers that will greatly aid questions involving evolution, ecology, and conservation using genetic and genomic approaches in the genus.


Asunto(s)
Fagus/genética , Transcriptoma , Argentina , Biblioteca de Genes , Marcadores Genéticos , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , ARN de Planta/genética , Análisis de Secuencia de ADN
9.
BMC Plant Biol ; 12: 93, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22708963

RESUMEN

BACKGROUND: Sclerotinia Head Rot (SHR) is one of the most damaging diseases of sunflower in Europe, Argentina, and USA, causing average yield reductions of 10 to 20 %, but leading to total production loss under favorable environmental conditions for the pathogen. Association Mapping (AM) is a promising choice for Quantitative Trait Locus (QTL) mapping, as it detects relationships between phenotypic variation and gene polymorphisms in existing germplasm without development of mapping populations. This article reports the identification of QTL for resistance to SHR based on candidate gene AM. RESULTS: A collection of 94 sunflower inbred lines were tested for SHR under field conditions using assisted inoculation with the fungal pathogen Sclerotinia sclerotiorum. Given that no biological mechanisms or biochemical pathways have been clearly identified for SHR, 43 candidate genes were selected based on previous transcript profiling studies in sunflower and Brassica napus infected with S. sclerotiorum. Associations among SHR incidence and haplotype polymorphisms in 16 candidate genes were tested using Mixed Linear Models (MLM) that account for population structure and kinship relationships. This approach allowed detection of a significant association between the candidate gene HaRIC_B and SHR incidence (P < 0.01), accounting for a SHR incidence reduction of about 20 %. CONCLUSIONS: These results suggest that AM will be useful in dissecting other complex traits in sunflower, thus providing a valuable tool to assist in crop breeding.


Asunto(s)
Ascomicetos/patogenicidad , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Helianthus/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Secuencia de Bases , Brassica napus/genética , Productos Agrícolas , ADN de Plantas/genética , Genes de Plantas/genética , Genotipo , Helianthus/inmunología , Helianthus/microbiología , Endogamia , Datos de Secuencia Molecular , Fenotipo , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN
10.
BMC Plant Biol ; 8: 7, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18215288

RESUMEN

BACKGROUND: Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. RESULTS: A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (theta = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 +/- 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). CONCLUSION: Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2 approximately 0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.


Asunto(s)
Cruzamiento , Helianthus/genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Cartilla de ADN , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA