Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 439: 129543, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35870206

RESUMEN

The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexFYTV-1, mexFYTV-2, mexFYTV-3, vanRYTV-1, vanSYTV-1 (carried by unclassified viruses), and bacAYTB-1 (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity.


Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/farmacología , Archaea/genética , Bacterias , Farmacorresistencia Microbiana/genética , Microbiota/genética
2.
Mol Cell Probes ; 57: 101726, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33789126

RESUMEN

Vibrio vulnificus (V. vulnificus) is a Gram-negative bacterium living in warm and salty water. This marine bacterium could produce hemolysin (VVH), which often causes serious gastroenteritis or septicemia when people contact to seawater or seafood containing V. vulnificus. Timely diagnosis is regard as essential to disease surveillance. In this paper, we aimed at developing a quick and sensitive method for the detection of Vibrio vulnificus using real time recombinase polymerase amplification (real time RPA). Specific primers and an exo probe were designed on the basis of the vvhA gene sequence available in GenBank. Target DNA could be amplified and labeled with specific fluorophore within 20 min at 38 °C. The method exhibited a high specificity, only detecting Vibrio vulnificus and not showing cross-reaction with other bacteria. The sensitivity of this method was 2 pg per reaction (20 µL) for DNA, or 200 copies per reaction (20 µL) for standard plasmid. The detection limit (LOD) stated as the target level that would be detected 95% of the time and estimated was 1.58 × 102 copies by fit of the probit to the results of 8 replicates in different concentration. For quantitative analysis of the real time RPA, the second order polynomial regression was adopted in our study. The results showed the correlation coefficients were raised above 0.98, which suggested this model might be a better choice for the quantitative analysis of real time RPA compared to the routine linear regression model. For artificially contaminated plasma samples, Vibrio vulnificus could be detected within 16 min by real time RPA at concentration as low as 1.2 × 102 CFU/mL or 2.4 CFU per reaction (20 µL). Thus, the real time RPA method established in this study shows great potential for detecting Vibrio vulnificus in the research laboratory and disease diagnosis.


Asunto(s)
Vibrio vulnificus , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa , Recombinasas , Sensibilidad y Especificidad , Vibrio vulnificus/genética
3.
J Microbiol Methods ; 168: 105801, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31811904

RESUMEN

The species Karenia mikimotoi is a common nearshore red tide alga that can secrete hemolytic exotoxin and ichthyotoxin, which can induce the death of fish and shellfish, causing severe economic losses. In this study, loop-mediated isothermal amplification (LAMP) was employed in combination with the lateral flow dipstick (LFD) visual detection method to establish the LAMP-LFD rapid detection method for K. mikimotoi. The internal transcribed spacer ITS1-5.8S-ITS2 of K. mikimotoi was used as the target sequence and was amplified with specific primers designed in this study. The results indicated that the amplification optimal reaction conditions for LAMP in this paper were for 20 min at 65 °C. Moreover, LAMP had excellent specificity, showing negative results for other common red tide causing algal species. In field samples, we successfully reduced the total time, with only 23 min needed from LAMP amplification to LFD result display, which was shorter than that of conventional PCR. Consequently, LAMP-LFD should be useful for rapid field detection of low-density K. mikimotoi and for the early prevention of red tide induced by such algae.


Asunto(s)
Cromatografía/métodos , Dinoflagelados/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Bahías , China , Cromatografía/instrumentación , Cartilla de ADN/genética , ADN Intergénico/genética , Dinoflagelados/genética , Floraciones de Algas Nocivas , Sensibilidad y Especificidad
4.
Protein J ; 38(6): 658-666, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31435810

RESUMEN

Modern organic chemistry faces many difficulties in the reliable production of cyclopeptides, such as poor yields and insufficient regio- and stereoselectivity. Thioesterase (TE) shows impressive stereospecificity, region- and chemoselectivity during the cyclization of peptide substrates. The biocatalytic properties of TE provide high value for industrial applications. Herein, a novel chemoenzymatic method to synthesize cilengitide is described based on the cyclic activity of the TE domain from microcystin synthetase C (McyC) of Microcystis aeruginosa. In addition, a single active site mutation in the McyC TE was engineered to generate a more effective macrocyclization catalyst. Compared to the chemical approach to synthesize cilengitide, this novel enzyme-catalysed methodology exhibits a higher synthetic efficiency with an approximately 3.4-fold higher yield (49.2%).


Asunto(s)
Venenos de Serpiente/síntesis química , Proteínas Bacterianas/química , Dominio Catalítico , Microcystis/enzimología , Péptido Sintasas/química
5.
Mol Cell Probes ; 44: 8-13, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610902

RESUMEN

Vibrio harveyi is a pathogen that infects fish and shellfish worldwide, causing severe economic losses for the aquaculture industry. As the early diagnosis of V. harveyi infection is crucial to disease surveillance and prevention in cultured marine animals, a fast and accurate method to detect V. harveyi is required. Here, we performed recombinase polymerase amplification (RPA) using novel primers specifically designed to recognize the V. harveyi toxR gene, which encodes a transmembrane protein, and then hybridized this gene with a carboxy fluorescein (FAM)-labeled probe. The optimal conditions for the real-time RPA assay were a probe concentration of 90 nM and a 20 min incubation at 37 °C. The sensitivity of our real-time RPA assay was 50 copies of the standard plasmid, while that of real-time PCR was 500 copies. In V. harveyi-spiked Pseudosciaena crocea samples, the sensitivity of our real-time RPA was 60 CFUs per reaction, while that of PCR was 600 CFUs per reaction. SPSS probit regression analysis indicated that the limit of detection (LOD) of our RPA assay, with 95% probability, was 18 copies. The LOD was reached within 20 min and was highly reproducible across eight independent assays. Our novel RPA method successfully differentiated V. harveyi from all other tested Vibrio species, including some that were closely related. Our real-time RPA assay, in combination with a rapid DNA extraction protocol, is a fast and accurate tool for the detection of V. harveyi and for monitoring disease outbreaks. This tool will be valuable for the aquaculture industry.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas/metabolismo , Vibrio/aislamiento & purificación , Animales , Bioensayo , Cartilla de ADN/metabolismo , Sondas de ADN/metabolismo , Peces/microbiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA