Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 17669, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518957

RESUMEN

Tailoring mechanical properties of transition metal carbides by substituting carbon with nitrogen atoms is a highly interesting approach, as thereby the bonding state changes towards a more metallic like character and thus ductility can be increased. Based on ab initio calculations we could prove experimentally, that up to a nitrogen content of about 68% on the non-metallic sublattice, Ta-C-N crystals prevail a face centered cubic structure for sputter deposited thin films. The cubic structure is partly stabilized by non-metallic as well as Ta vacancies - the latter are decisive for nitrogen rich compositions. With increasing nitrogen content, the originally super-hard fcc-TaC0.71 thin films soften from 40 GPa to 26 GPa for TaC0.33N0.67, accompanied by a decrease of the indentation modulus. With increasing nitrogen on the non-metallic sublattice (hence, decreasing C) the damage tolerance of Ta-C based coatings increases, when characterized after the Pugh and Pettifor criteria. Consequently, varying the non-metallic sublattice population allows for an effective tuning and designing of intrinsic coating properties.

2.
Phys Rev Lett ; 119(16): 163401, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29099197

RESUMEN

Electronic stopping of slow protons in ZnO, VO_{2} (metal and semiconductor phases), HfO_{2}, and Ta_{2}O_{5} was investigated experimentally. As a comparison of the resulting stopping cross sections (SCS) to data for Al_{2}O_{3} and SiO_{2} reveals, electronic stopping of slow protons does not correlate with electronic properties of the specific material such as band gap energies. Instead, the oxygen 2p states are decisive, as corroborated by density functional theory calculations of the electronic densities of states. Hence, at low ion velocities the SCS of an oxide primarily scales with its oxygen density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA