Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 193(6): 1639-1653, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33559758

RESUMEN

In time, diagnosis and detection of virulence factor and its pathogenomics study continues to grow and this leads to novel treatments for infectious diseases. The objective of this study was to detect and characterise virulence genes in a haemolytic strain of Staphylococcus aureus in vitro and molecular interaction studies with herbal essential oil components in silico. A hospital biosample-isolated strain of Staphylococcus aureus (BMS-2) was resistant towards Cephalosporin. The PCR-amplified FASTA nucleotide sequence was identical with S. aureus strains absolutely. The calculated GC value was 34.05%. The translated protein sequence was identified with a conserved domain of hlyII ß-channel forming cytolysin belonging to leukocidin superfamily and was predicted as a stable, non-transmembrane protein comprising B cell epitopes. Structurally, the protein was found to be composed of α helix, π-helix, extended strands, ß-sheet, turn and bends with atomic composition as C658H1026N174O200S2. The molecular docking studies made between the HlyII cytolysin (receptor) and wet lab studied essential oil components (citral a, citronellol, eucalyptol, eugenol, geraniol, linalool, menthol, piperine and thymol) as ligands using Autodock 1.5.6 tool had inferred about prevalence of hydrogen bonds as well as covalent bonds in the intermolecular interactions. Amino acids like Tyr68, Tyr 69, Asn106, Asp67 and Asn106 were observed to be the most active residues for H-bond and hydrophobic bonds respectively. Only geraniol had interaction with glycine residue of the toxin molecule. In conclusion, geraniol with the highest ligand efficiency was observed to be the most potent phyto-constituent interacting with the in vitro detected hlyII cytotoxin.


Asunto(s)
Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Aceites Volátiles/química , Perforina/química , Staphylococcus aureus/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Humanos , Perforina/antagonistas & inhibidores , Perforina/genética , Estructura Secundaria de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA