Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JAMA Netw Open ; 3(10): e2020836, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33074327

RESUMEN

Importance: The potential benefit of novel skeletal muscle anabolic agents to improve physical function in people with sarcopenia and other muscle wasting diseases is unknown. Objective: To confirm the safety and efficacy of bimagrumab plus the new standard of care on skeletal muscle mass, strength, and physical function compared with standard of care alone in community-dwelling older adults with sarcopenia. Design, Setting, and Participants: This double-blind, placebo-controlled, randomized clinical trial was conducted at 38 sites in 13 countries among community-dwelling men and women aged 70 years and older meeting gait speed and skeletal muscle criteria for sarcopenia. The study was conducted from December 2014 to June 2018, and analyses were conducted from August to November 2018. Interventions: Bimagrumab 700 mg or placebo monthly for 6 months with adequate diet and home-based exercise. Main Outcomes and Measures: The primary outcome was the change in Short Physical Performance Battery (SPPB) score after 24 weeks of treatment. Secondary outcomes included 6-minute walk distance, usual gait speed, handgrip strength, lean body mass, fat body mass, and standard safety parameters. Results: A total of 180 participants were recruited, with 113 randomized to bimagrumab and 67 randomized to placebo. Among these, 159 participants (88.3%; mean [SD] age, 79.1 [5.3] years; 109 [60.6%] women) completed the study. The mean SPPB score increased by a mean of 1.34 (95% CI, 0.90 to 1.77) with bimagrumab vs 1.03 (95% CI, 0.53 to 1.52) with placebo (P = .13); 6-minute walk distance increased by a mean of 24.60 (95% CI, 7.65 to 41.56) m with bimagrumab vs 14.30 (95% CI, -4.64 to 33.23) m with placebo (P = .16); and gait speed increased by a mean of 0.14 (95% CI, 0.09 to 0.18) m/s with bimagrumab vs 0.11 (95% CI, 0.05 to 0.16) m/s with placebo (P = .16). Bimagrumab was safe and well-tolerated and increased lean body mass by 7% (95% CI, 6% to 8%) vs 1% (95% CI, 0% to 2%) with placebo, resulting in difference of 6% (95% CI, 4% to 7%) (P < .001). Conclusions and Relevance: This randomized clinical trial found no significant difference between participants treated with bimagrumab vs placebo among older adults with sarcopenia who had 6 months of adequate nutrition and light exercise, with physical function improving in both groups. Bimagrumab treatment was safe, well-tolerated, increased lean body mass, and decreased fat body mass. The effects of sarcopenia, an increasing cause of disability in older adults, can be reduced with proper diet and exercise. Trial Registration: ClinicalTrials.gov Identifier: NCT02333331; EudraCT number: 2014-003482-25.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Terapia por Ejercicio/métodos , Sarcopenia/terapia , Nivel de Atención , Accidentes por Caídas/prevención & control , Anciano , Anciano de 80 o más Años , Terapia Combinada , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Vida Independiente , Trastornos de la Destreza Motora/prevención & control , Calidad de Vida , Sarcopenia/tratamiento farmacológico , Resultado del Tratamiento
2.
Biomolecules ; 7(3)2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28788436

RESUMEN

The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.


Asunto(s)
Aminoácidos/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Levaduras/metabolismo
3.
Cell Rep ; 13(1): 1-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26387955

RESUMEN

Rag GTPases assemble into heterodimeric complexes consisting of RagA or RagB and RagC or RagD in higher eukaryotes, or Gtr1 and Gtr2 in yeast, to relay amino acid signals toward the growth-regulating target of rapamycin complex 1 (TORC1). The TORC1-stimulating state of Rag GTPase heterodimers, containing GTP- and GDP-loaded RagA/B/Gtr1 and RagC/D/Gtr2, respectively, is maintained in part by the FNIP-Folliculin RagC/D GAP complex in mammalian cells. Here, we report the existence of a similar Lst4-Lst7 complex in yeast that functions as a GAP for Gtr2 and that clusters at the vacuolar membrane in amino acid-starved cells. Refeeding of amino acids, such as glutamine, stimulated the Lst4-Lst7 complex to transiently bind and act on Gtr2, thereby entailing TORC1 activation and Lst4-Lst7 dispersal from the vacuolar membrane. Given the remarkable functional conservation of the RagC/D/Gtr2 GAP complexes, our findings could be relevant for understanding the glutamine addiction of mTORC1-dependent cancers.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacología , Sitios de Unión , Glutamina/metabolismo , Glutamina/farmacología , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética
4.
Cell Res ; 25(9): 1043-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26206314

RESUMEN

The target of rapamycin complex 1 (TORC1) integrates various hormonal and nutrient signals to regulate cell growth, proliferation, and differentiation. Amino acid-dependent activation of TORC1 is mediated via the yeast EGO complex (EGOC) consisting of Gtr1, Gtr2, Ego1, and Ego3. Here, we identify the previously uncharacterized Ycr075w-a/Ego2 protein as an additional EGOC component that is required for the integrity and localization of the heterodimeric Gtr1-Gtr2 GTPases, equivalent to mammalian Rag GTPases. We also report the crystal structure of the Ego1-Ego2-Ego3 ternary complex (EGO-TC) at 2.4 Å resolution, in which Ego2 and Ego3 form a heterodimer flanked along one side by Ego1. Structural data also reveal the structural conservation of protein components between the yeast EGO-TC and the human Ragulator, which acts as a GEF for Rag GTPases. Interestingly, however, artificial tethering of Gtr1-Gtr2 to the vacuolar membrane is sufficient to activate TORC1 in response to amino acids even in the absence of the EGO-TC. Our structural and functional data therefore support a model in which the EGO-TC acts as a scaffold for Rag GTPases in TORC1 signaling.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Inmunoprecipitación , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal
5.
Cell Cycle ; 12(18): 2948-52, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23974112

RESUMEN

The target of rapamycin complex 1 (TORC1) regulates eukaryotic cell growth in response to a variety of input signals. In S. cerevisiae, amino acids activate TORC1 through the Rag guanosine triphosphatase (GTPase) heterodimer composed of Gtr1 and Gtr2 found together with Ego1 and Ego3 in the EGO complex (EGOC). The GTPase activity of Gtr1 is regulated by the SEA complex (SEAC). Specifically, SEACIT, a SEAC subcomplex containing Iml1, Npr2, and Npr3 functions as a GTPase activator (GAP) for Gtr1 to decrease the activity of TORC1 and, consequently, growth, after amino acid deprivation. Here, we present genetic epistasis data, which show that SEACAT, the other SEAC subcomplex, containing Seh1, Sea2-4, and Sec13, antagonizes the GAP function of SEACIT. Orthologs of EGOC (Ragulator), SEACIT (GATOR1), and SEACAT (GATOR2) are present in higher eukaryotes, highlighting the remarkable conservation, from yeast to man, of Rag GTPase and TORC1 regulation.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Sci Signal ; 6(277): ra42, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23716719

RESUMEN

The Rag family of guanosine triphosphatases (GTPases) regulates eukaryotic cell growth in response to amino acids by activating the target of rapamycin complex 1 (TORC1). In humans, this pathway is often deregulated in cancer. In yeast, amino acids promote binding of GTP (guanosine 5'-triphosphate) to the Rag family GTPase Gtr1, which, in combination with a GDP (guanosine diphosphate)-bound Gtr2, forms the active, TORC1-stimulating GTPase heterodimer. We identified Iml1, which functioned in a complex with Npr2 and Npr3, as a GAP (GTPase-activating protein) for Gtr1. Upon amino acid deprivation, Iml1 transiently interacted with Gtr1 at the vacuolar membrane to stimulate its intrinsic GTPase activity and consequently decrease the activity of TORC1. Our results delineate a potentially conserved mechanism by which the Iml1, Npr2, and Npr3 orthologous proteins in humans may suppress tumor formation.


Asunto(s)
Aminoácidos/deficiencia , Proteínas Activadoras de GTPasa/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Guanosina Trifosfato/metabolismo , Inmunoprecipitación , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Saccharomyces cerevisiae , Vacuolas/metabolismo
7.
ACS Chem Biol ; 7(4): 715-22, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22260433

RESUMEN

TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 µM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/análisis , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Citometría de Flujo , Proteínas Fluorescentes Verdes , Humanos , Transducción de Señal/efectos de los fármacos
8.
Eukaryot Cell ; 10(10): 1367-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21841122

RESUMEN

TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.


Asunto(s)
Genoma Mitocondrial , Mitocondrias/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Mol Cell ; 35(5): 563-73, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748353

RESUMEN

The target of rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is activated by a variety of hormones (e.g., insulin) and nutrients (e.g., amino acids) and is deregulated in various cancers. Here, we report that the yeast Rag GTPase homolog Gtr1, a component of the vacuolar-membrane-associated EGO complex (EGOC), interacts with and activates TORC1 in an amino-acid-sensitive manner. Expression of a constitutively active (GTP-bound) Gtr1(GTP), which interacted strongly with TORC1, rendered TORC1 partially resistant to leucine deprivation, whereas expression of a growth inhibitory, GDP-bound Gtr1(GDP), caused constitutively low TORC1 activity. We also show that the nucleotide-binding status of Gtr1 is regulated by the conserved guanine nucleotide exchange factor (GEF) Vam6. Thus, in addition to its regulatory role in homotypic vacuolar fusion and vacuole protein sorting within the HOPS complex, Vam6 also controls TORC1 function by activating the Gtr1 subunit of the EGO complex.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Membranas Intracelulares/enzimología , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Vacuolas/enzimología , Proteínas Adaptadoras del Transporte Vesicular/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Cicloheximida/farmacología , Proteínas de Unión al ADN/metabolismo , Endosomas/enzimología , Factores de Intercambio de Guanina Nucleótido/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Membranas Intracelulares/efectos de los fármacos , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Sirolimus/farmacología , Factores de Tiempo , Factores de Transcripción/metabolismo , Vacuolas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA