Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37237544

RESUMEN

Phytoplasma diseases pose a substantial threat to diverse crops of agricultural importance. Management measures are usually implemented only after the disease has already occurred. Early detection of such phytopathogens, prior to disease outbreak, has rarely been attempted, but would be highly beneficial for phytosanitary risk assessment, disease prevention and mitigation. In this study, we present the implementation of a recently proposed proactive disease management protocol (DAMA: Document, Assess, Monitor, Act) for a group of vector-borne phytopathogens. We used insect samples collected during a recent biomonitoring program in southern Germany to screen for the presence of phytoplasmas. Insects were collected with malaise traps in different agricultural settings. DNA was extracted from these mass trap samples and subjected to PCR-based phytoplasma detection and mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding. Phytoplasma DNA was detected in two out of the 152 insect samples analyzed. Phytoplasma identification was performed using iPhyClassifier based on 16S rRNA gene sequence and the detected phytoplasmas were assigned to 'Candidatus Phytoplasma asteris'-related strains. Insect species in the sample were identified by DNA metabarcoding. By using established databases, checklists, and archives, we documented historical associations and records of phytoplasmas and its hosts in the study region. For the assessment in the DAMA protocol, phylogenetic triage was performed in order to determine the risk for tri-trophic interactions (plant-insect-phytoplasma) and associated disease outbreaks in the study region. A phylogenetic heat map constitutes the basis for risk assessment and was used here to identify a minimum number of seven leafhopper species suggested to be monitored by stakeholders in this region. A proactive stance in monitoring changing patterns of association between hosts and pathogens can be a cornerstone in capabilities to prevent future phytoplasma disease outbreaks. To the best of our knowledge, this is the first time that the DAMA protocol has been applied in the field of phytopathology and vector-borne plant diseases.

2.
Plants (Basel) ; 9(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916901

RESUMEN

The psyllids Cacopsylla melanoneura and Cacopsylla picta reproduce on apple (Malus × domestica) and transmit the bacterium 'Candidatus Phytoplasma mali', the causative agent of apple proliferation. Adult psyllids were collected by the beating-tray method from lower and upper parts of the apple tree canopy in the morning and in the afternoon. There was a trend of catching more emigrant adults of C.melanoneura in the morning and in the lower part of the canopy. For C.melanoneura remigrants, no differences were observed. The findings regarding the distribution of adults were reflected by the number of nymphs collected by wash-down sampling. The density of C.picta was too low for a statistical analysis. The vector monitoring and how it is commonly performed, is suitable for estimating densities of C.melanoneura. Nevertheless, above a certain temperature threshold, prediction of C.melanoneura density might be skewed. No evidence was found that other relatively abundant psyllid species in the orchard, viz. Baeopelma colorata, Cacopsylla breviantennata, Cacopsylla brunneipennis, Cacopsylla pruni and Trioza urticae, were involved in 'Candidatus Phytoplasma mali' transmission. The results of our study contribute to an advanced understanding of insect vector behavior and thus have a practical impact for an improved field monitoring.

3.
Front Plant Sci ; 10: 628, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156683

RESUMEN

Fungal leaf diseases cause economically important damage to crop plants. Protective treatments help producers to secure good quality crops. In contrast, curative treatments based on visually detectable symptoms are often riskier and less effective because diseased crop plants may develop disease symptoms too late for curative treatments. Therefore, early disease detection prior symptom development would allow an earlier, and therefore more effective, curative management of fungal diseases. Using a five-lens multispectral imager, spectral reflectance of green, blue, red, near infrared (NIR, 840 nm), and rededge (RE, 720 nm) was recorded in time-course experiments of detached tomato leaves inoculated with the fungus Botrytis cinerea and mock infection solution. Linear regression models demonstrate NIR and RE as the two most informative spectral data sets to differentiate pathogen- and mock-inoculated leaf regions of interest (ROI). Under controlled laboratory conditions, bands collecting NIR and RE irradiance showed a lower reflectance intensity of infected tomato leaf tissue when compared with mock-inoculated leaves. Blue and red channels collected higher intensity values in pathogen- than in mock-inoculated ROIs. The reflectance intensities of the green band were not distinguishable between pathogen- and mock infected ROIs. Predictions of linear regressions indicated that gray mold leaf infections could be identified at the earliest at 9 h post infection (hpi) in the most informative bands NIR and RE. Re-analysis of the imagery taken with NIR and RE band allowed to classify infected tissue.

4.
Bull Entomol Res ; 103(6): 621-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23628148

RESUMEN

Species distribution models (SDMs), which are well established in many fields of biological research, are still uncommon in the agricultural risk analysis of pest insects. To exemplify the use of SDMs, we investigated the influence of environmental factors on the occurrence of Hyalesthes obsoletus Signoret (Hemiptera: Cixiidae). The planthopper is the only known vector of the grapevine yellows disease 'bois noir'. The study was conducted in 145 locations in the Baden region of southwest Germany. The planthopper was surveyed on host plant patches, consisting of stinging nettle and/or bindweeds. We used a stratified modelling framework where (1) species presence-absence data were related to an extensive environmental dataset using logistic regressions; and (2) different types of average models were developed based on an information theoretic method. The results show that the incidence of H. obsoletus is associated to above- as well as below-ground environmental factors, particularly to the amount of fine soil and average annual precipitation. This result was consistent across all average models. The relative importance of other environmental variables was dependent upon the average model under consideration and thus may vary according to their intended use, either the explanation of habitat requirements or the prediction and mapping of occurrence risks. The study showed that SDMs offer a quantification of species' habitat requirements and thus, could represent a valuable tool for pest management purposes. By providing examples of current issues of grapevine pests in viticulture, we discuss the use of SDMs in agricultural risk analysis and highlight their advantages and caveats.


Asunto(s)
Clima , Ecosistema , Hemípteros , Insectos Vectores , Modelos Biológicos , Animales , Geografía , Alemania , Control de Insectos , Enfermedades de las Plantas , Análisis de Regresión , Suelo , Vitis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA