Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274913

RESUMEN

The enmein-type diterpenoids are a class of anticancer ent-Kaurane diterpnoids that have received much attention in recent years. Herein, a novel 1,14-epoxy enmein-type diterpenoid 4, was reported in this project for the first time. A series of novel enmein-type diterpenoid derivatives were also synthesized and tested for anticancer activities. Among all the derivatives, compound 7h exhibited the most significant inhibitory effect against A549 cells (IC50 = 2.16 µM), being 11.03-folds better than its parental compound 4. Additionally, 7h exhibited relatively weak anti-proliferative activity (IC50 > 100 µM) against human normal L-02 cells, suggesting that it had excellent anti-proliferative selectivity for cancer cells. Mechanism studies suggested that 7h induced G0/G1 arrest and apoptosis in A549 cells by inhibiting the PI3K/AKT/mTOR pathway. This process was associated with elevated intracellular ROS levels and collapsed MMP. In summary, these data identified 7h as a promising lead compound that warrants further investigation of its anticancer properties.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diterpenos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diterpenos/farmacología , Diterpenos/química , Diterpenos/síntesis química , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células A549 , Diseño de Fármacos , Línea Celular Tumoral , Relación Estructura-Actividad , Especies Reactivas de Oxígeno/metabolismo
2.
ACS Appl Mater Interfaces ; 16(36): 47294-47302, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219058

RESUMEN

Reducing unnecessary blood loss in hemostasis is a major challenge for traditional hemostatic materials due to uncontrolled blood absorption. Tuning the hydrophilic and hydrophobic properties of hemostatic materials provides a road to reduce blood loss. Here, we developed a superhydrophobic aerogel that enabled remarkably reduced blood loss. The aerogel was fabricated with polydopamine-coated and fluoroalkyl chain-modified bacterial cellulose via a directional freeze-drying method. Primarily, the hydrophobic feature prevented blood from uncontrolled absorption by the material and overflowing laterally. Additionally, the aerogel had a dense network of channels that allowed it to absorb water from blood due to the capillary effect, and fluoroalkyl chains trapped the blood cells entering the channels to form a compact barrier via hydrophobic interaction at the bottom of the aerogel, causing quick fibrin generation and blood coagulation. The animal experiments reveal that the aerogel reduced the hemostatic time by 68% and blood loss by 87 wt % compared with QuikClot combat gauze. The study demonstrates the superiority of superhydrophobic aerogels for hemostasis and provides new insights into the development of hemostatic materials.


Asunto(s)
Celulosa , Hemostasis , Hemostáticos , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Celulosa/química , Celulosa/farmacología , Animales , Nanofibras/química , Hemostáticos/química , Hemostáticos/farmacología , Hemostasis/efectos de los fármacos , Geles/química , Polímeros/química , Polímeros/farmacología , Ratones , Humanos , Coagulación Sanguínea/efectos de los fármacos , Indoles/química
3.
Toxicol Res (Camb) ; 13(3): tfae085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883411

RESUMEN

Objective: Screening and predicting potential targets for gastrodin antioxidant stress based on network pharmacology methods, and exploring the effect of gastrodin on lead acetate induced oxidative stress in PC12 cells through cell experiments. Methods: Through the Pharmaper database Predict the target of action of gastrodin. Through OMIM and GeneCards to collect oxidative stress targets from database, and intersect with drug targets to obtain drug disease intersection targets; Construct a PPI network diagram using the STRING database. Perform GO enrichment analysis and KEGG pathway enrichment analysis on intersection targets through the DAVID platform. Lead acetate (PbAc) exposure was used to establish a lead poisoning cell model, and intracellular ROS levels, ALB, AKT1, and Caspase-3 levels were measured. Results: A total of 288 targets of gastrodin action, 638 targets related to oxidative stress, and 62 drug disease intersection targets were obtained, among which core targets such as ALB, AKT1, CASP3 may be closely related to oxidative stress. KEGG pathway analysis showed that gastrodin antioxidant stress mainly involved in lipid, cancer pathway and other signaling pathways. The results of the cell experiment showed that 50 µM is the optimal effective concentration for PbAc induced ROS production in PC12 cells. Gastrodin significantly increased the ROS content of PC12 cells treated with PbAc, Upregulation of ALB expression and downregulation of AKT1 and CASP3 expression. Conclusions: Gastrodin may alleviate PbAc-induced ROS in PC12 cells, indicating potential protective effects against oxidative stress. Further studies are needed to confirm these findings and explore the underlying mechanisms.

4.
Pharm Dev Technol ; 29(3): 153-163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330994

RESUMEN

Shikonin (SHK) has been evidenced to possess effects against various cancer cells. However, poor aqueous solubility and high toxicity restrict its application. In the study, RGD-decorated liposomes loaded with SHK (RGD-Lipo-SHK) were prepared via thin-film hydration method. Characterization and cellular uptake of liposomes was evaluated. Cytotoxicity of blank liposomes and different SHK formulations was measured against breast cancer cells (MDA-MB-231, MCF-7, and MCF-10A). Anti-tumour effects and pharmacokinetic parameters of different SHK formulations were appraised in tumour spheroids and in rat model, respectively. Liposomes displayed a particle size of less than 127 nm with a polydispersity index about 0.21. The encapsulation efficiency was about 91% for SHK, and drug leakage rate of liposomes was less than 6%. RGD-Lipo-SHK showed superior cellular internalization in the αvß3-positive MDA-MB-231 cells. Blank liposomes had no cytotoxicity to MDA-MB-231 and MCF-7 cells. Howbeit, different SHK formulations obviously inhibited proliferation of MCF-10A cells, especially free SHK. Meanwhile, RGD-Lipo-SHK significantly inhibited growth inhibition of tumour spheroids. The pharmacokinetics study indicated that the peak concentration, area under plasma concentration-time curves, half-life, and mean residence time of RGD-Lipo-SHK distinctly increased compared with those of free SHK. Altogether, these results demonstrated RGD-Lipo-SHK could reduce cytotoxicity, strengthen the antitumor-targeted effect, and prolong circulation time, which provides a foundation for further in vivo experimentations.


Asunto(s)
Liposomas , Naftoquinonas , Humanos , Ratas , Animales , Naftoquinonas/farmacología , Células MCF-7 , Oligopéptidos , Línea Celular Tumoral
5.
Carbohydr Polym ; 301(Pt B): 120324, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446491

RESUMEN

Hemostats that can strongly adhere to wound tissue and are easy to remove when stopping bleeding are favored for the control of noncompressible hemorrhage. Here, we prepared a citric acid (CA)-crosslinked and N-hydroxysuccinimide (NHS) ester-activated carboxymethyl cellulose (CMC-NHS) aerogel for noncompressible hemostasis. CA was used to crosslink CMC to form a strengthened structure. NHS ester was introduced to activate the adhesion of CMC-NHS aerogel to wound tissue and promoted blood coagulation through the formation of amide crosslinks between CMC and erythrocytes and free blood proteins. The plentiful carboxyl groups could also trigger the intrinsic coagulation pathway. Thus, the aerogel could quickly adhere to wound tissue to stop bleeding, and then could be easily removed when fully hydrated as CMC was dissolved at the adhesion interface. The aerogel also had good biocompatibility and antibacterial capability. Overall, CMC-NHS aerogel is a competitive hemostat for the control of noncompressible hemorrhage.


Asunto(s)
Adhesivos , Carboximetilcelulosa de Sodio , Humanos , Hemorragia , Coagulación Sanguínea , Ésteres
6.
J Nutr Biochem ; 91: 108603, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548475

RESUMEN

Prenatal and/or early postnatal exposure to lead (Pb) may be associated with deficits in cognitive function in the toddler offspring, and oxidative stress likely play a central role in mediating these adverse effects. Here, we tested the hypothesis that ameliorative effect of ferulic acid (FA) on lead-induced cognitive deficits attributed to its antioxidant properties in a nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent manner in the context of prenatal Pb exposure. To test this hypothesis, Nrf2 knockout and C57BL/6 wild type mouse dams were exposed/unexposed to PbAc (250 ppm) during gestation day 5 to postnatal day 14 via drinking water, and FA (50 mg/kg)/vehicle was administered orally to dams for 31 d. Spatial learning and memory in pups was assessed by Morris water maze. Biochemical assays, real-time PCR, western blot techniques were employed to evaluate oxidative stress and signaling pathways in the brain of pups. We report that lead acetate (PbAc) leads to deficits in cognitive functions in offspring, which were partially attenuated by FA (P<.05). In parallel, pretreatment with FA also significantly inhibited the PbAc-induced oxidative stress, as indicated by a change in NAD+/NADH ratio, glutathione (GSH) and malondialdehyde contents (all P<.05). Interestingly, FA significantly elevated the glutamate cysteine ligase and heme oxygenase 1 at levels of transcription and translation in both mice exposed and unexposed to Pb, increasing de novo synthesis of GSH (all P<.05). Furthermore, maternal FA administration activates extracellular signal-regulated kinases 1 and 2 and promotes more Nrf2 nuclear accumulation by increasing the Nrf2 total protein in brain of offspring mice (all P<.05). Conversely, FA failed to influence Pb-induced both memory deficits and oxidative stress in offspring of Nrf2 knockout mice (all P≥.05), suggesting that Nrf2 is essential in mediating the cognition-enhancing and antioxidant effects of FA. Overall, our results demonstrate that FA protects against Pb-induced offspring's cognitive deficits, suggesting that it is a promising candidate for the treatment of Pb toxicity.


Asunto(s)
Disfunción Cognitiva/prevención & control , Ácidos Cumáricos/uso terapéutico , Plomo/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Efectos Tardíos de la Exposición Prenatal/prevención & control , Sustancias Protectoras/uso terapéutico , Animales , Animales Recién Nacidos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Femenino , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 221: 117138, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31158762

RESUMEN

In this study, based on the oxidative decolorization of three azo dyes (Orange G (OG), Acid Orange 7 (AO7) and Reactive Black 5 (RB5)) with hydroxyl radicals generated in Fenton system, we have successfully established three types of azo dyes spectrophotometric methods for measuring aqueous hydrogen peroxide (H2O2) concentration. The decolorization extent of OG, AO7 and RB5 at the corresponding characteristic wavelengths of 478 nm, 484 nm and 597 nm are proportion to the concentration of H2O2 in aqueous solutions. Under the selected reaction conditions, three well linear correlations between the depletion of azo dyes and the H2O2 concentration are established in the range of 0.45-175 µmol L-1 of OG, 0.36-120 µmol L-1 of AO7 and 0.44-175 µmol L-1 of RB5, respectively. These proposed spectrophotometric methods are enough accurate to measure low concentrations of H2O2 in practical water samples and monitor the variations of H2O2 concentration during the phenol degradation in the Cu(II)/HCO3-/H2O2 process.

8.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1195-1203, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28315454

RESUMEN

Recently, oxidative stress is strongly associated with lead (Pb)-induced neurotoxicity. We reported previously that Astragaloside IV (AS-IV) possesses potent antioxidant properties. Here, we evaluate the hypothesis that AS-IV attenuates lead acetate (PbAc)-mediated inhibition of neurite outgrowth might mainly result from its antioxidant property via serine/threonine protein kinase (Akt)-dependent activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Interestingly, AS-IV attenuates PbAc-induced inhibition of neurite outgrowth and displayed potential antioxidant properties by inhibiting reactive oxygen species (ROS). Concomitantly, AS-IV enhanced phase II detoxifying enzymes such as heme oxygenase 1 (HO-1), thioredoxin reductase (TrxR), and glutamate cysteine ligase catalytic subunit (GCLc). Conversely, AS-IV had no effect on GCL modulatory subunit (GCLm) and superoxide dismutase (SOD) activity/expression. Furthermore, AS-IV evoked Akt phosphorylation, and subsequent induced phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) at Ser9 (that is, inactivation), which stimulated Nrf2-mediated antioxidant response element (ARE)-containing activation. Importantly, Akt locates upstream of GSK-3ß and regulates phase II detoxifying enzymes gene expression through Nrf2 nuclear accumulation in PC12 cells exposed to PbAc. Noteworthy, these results were further confirmed through signalling pathway inhibitors, dominant negative mutant and short hairpin RNA technology. Collectively, these in vitro findings suggest that AS-IV attenuates PbAc-induced inhibition of neurite outgrowth attributed to its antioxidant properties and may be a promising candidate for the treatment of lead developmental neurotoxicity.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neuritas/metabolismo , Compuestos Organometálicos/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas del Tejido Nervioso/biosíntesis , Neuritas/patología , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA