Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(2): 2725-2736, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598373

RESUMEN

Despite the numerous advantages of nanomedicines, their therapeutic efficacy is hampered by biological barriers, including fast in vivo clearance, poor tumor accumulation, inefficient penetration, and cellular uptake. Herein, cross-linked supersmall micelles based on zwitterionic hyperbranched polycarbonates can overcome these challenges for efficiently targeted drug delivery. Biodegradable acryloyl/zwitterion-functionalized hyperbranched polycarbonates are synthesized by a one-pot sequential reaction of Michael-type addition and ring-opening polymerization, followed by controlled modification with carboxybetaine thiol. Cross-linked supersmall zwitterionic micelles (X-CBMs) are readily prepared by straightforward self-assembly and UV cross-linking. X-CBMs exhibit prolonged blood circulation because of their cross-linked structure and zwitterion decoration, which resist protein corona formation and facilitate escaping RES recognition. Combined with the advantage of supersmall size (7.0 nm), X-CBMs mediate high tumor accumulation and deep penetration, which significantly enhance the targeted antitumor outcome against the 4T1 tumor model by administration of the paclitaxel (PTX) formulation (X-CBM@PTX).


Asunto(s)
Micelas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Cemento de Policarboxilato , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Paclitaxel/química , Línea Celular Tumoral , Portadores de Fármacos/química , Polietilenglicoles/química
2.
J Phys Chem B ; 110(47): 23750-5, 2006 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17125336

RESUMEN

Semiempirical calculations were carried out on several model oligomers to investigate the tunable behavior of p-n copolymers with the repeating units constructed by oligothiophenes as the pi-excessive type blocks and 1,4-bis(oxadiazolyl) benzene as the pi-deficient type block. The calculated evolutions of the HOMO and LUMO of the model oligomers were in good agreement with the experimental oxidation and reduction potentials of the corresponding polymers. The effect of the length of the oligothiophene on the electronic structures and optical properties was elucidated by analyzing the HOMO and LUMO spatial distribution patterns of the model oligomers. When the number of thiophene rings increases, the HOMO and LUMO are contributed mostly from the oligothiophene segments and either the introduced single positive or negative charge focuses on the oligothiophene segments. The absorption spectra of polymers were also simulated by performing calculations on the corresponding oligomers. Good matches were observed between the calculated absorption spectra and the experimental UV-vis spectra of the corresponding polymers. The study shows that the backbone modification of the p-n copolymer, that is, changing the number of thiophene unit in the p-n diblock copolymer, greatly modifies the optical properties of the polymer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA