Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124872

RESUMEN

Mn/TiO2 catalysts with varying solid contents were innovatively prepared by the sol-gel method and were used for selective catalytic reduction of NO at low temperatures using NH3 (NH3-SCR) as the reducing agent. Surprisingly, it was found that as the solid content of the sol increased, the catalytic activity of the developed Mn/TiO2 catalyst gradually increased, showing excellent catalytic performance. Notably, the Mn/TiO2 (50%) catalyst demonstrates outstanding denitration performance, achieving a 96% NO conversion rate at 100 °C under a volume hourly space velocity (VHSV) of 24,000 h-1, while maintaining high N2 selectivity and stability. It was discovered that as the solid content increased, the catalyst's specific surface area (SSA), surface Mn4+ concentration, chemisorbed oxygen, chemisorption of NH3, and catalytic reducibility all improved, thereby enhancing the catalytic efficiency of NH3-SCR in degrading NO. Moreover, NH3 at the Lewis acidic sites and NH4+ at the Bronsted acidic sites of the catalyst were capable of reacting with NO. Conversely, NO and NO2 adsorbed on the catalyst, along with bidentate and monodentate nitrates, were unable to react with NH3 at low temperatures. Consequently, the developed catalyst's low-temperature catalytic reaction mechanism aligns with the E-R mechanism.

2.
RSC Adv ; 14(12): 8556-8566, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38482063

RESUMEN

Polyimide aerogels (PIAs) not only possess excellent thermodynamic properties but also have a high porosity structure, making them an exceptional protective and thermal insulation material, and further broadening their application scope in aerospace and other cutting-edge fields. In this work, a series of anisotropic polyimide aerogels (3,3',4,4'-biphenyltetracarboxylic dianhydride (S-BPDA), p-phenylenediamine (PDA), 4,4'-diaminodiphenyl ether (ODA)) with excellent properties were prepared. These PIAs were obtained by unidirectional freeze-drying and thermal amination of two different precursor solutions mixed in proportion. These PIAs possess an irregularly oval tubular structure, exhibiting pronounced anisotropy. (PIA-2 exhibits outstanding flexible resilience in the radial direction. It can still regain its original form after half an hour of compression by a universal testing machine, yet it cannot do so in the axial direction. The thermal diffusivity of PIA-5 in the radial direction at room temperature is as low as 0.067 mm2 s-1, and even at 200 °C, the thermal diffusivity is as low as 0.057 mm2 s-1. Meanwhile, the thermal diffusivity in the axial direction at room temperature is 0.11 mm2 s-1, surpassing the value of 0.106 mm2 s-1 of aerogels prepared from monomeric raw materials and dried under supercritical conditions). PIAs exhibit outstanding thermal stability (the axial strength and modulus retention of PIA-8 at 200 °C are as high as 52.63% and 44.82%), and its weight loss temperature of 5% is as high as 603 °C and it has a glass softening temperature of 387 °C. PIAs also demonstrate exceptional flame retardancy in imitation flame retardant experiments and exhibit outstanding thermal insulation performance when heated on a 150 °C heating plate for 10 minutes (the radial surface temperature of PIA-5 was only 49.9 °C). These anisotropic PIAs materials exhibit outstanding flexible resilience, and thermal protection performance, holding significant importance for their widespread adoption as thermal insulation materials in aerospace, high-precision electronic components, and other domains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA