Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 45(15): 4328-4331, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735290

RESUMEN

We report on experimental investigations of the lasing effect in novel chiral liquid crystal (CLC) systems with a deformed lying helix (DLH). The lasing is studied for both odd- and even-order field-induced stop-bands, which are characteristic exclusively of the DLH state. The DLH state is achieved in special CLC cells with periodic boundary conditions, when the surface alignment is flipped between planar and vertical states. The alignment surfaces are prepared using focused ion-beam lithography. In an electric field, such CLC systems undergo an orientational transition, when the initial Grandjean-plane texture with the helix axis perpendicular to the CLC layer is transformed into the DLH state with the helix axis oriented in the plane of the layer. Due to field-induced strong deformation, the DLH system is characterized by a set of photonic stop-bands with a fine spectral structure; namely, on these fine-structured sub-bands, we have observed and studied the low-threshold lasing effect.

2.
Artículo en Inglés | MEDLINE | ID: mdl-26465485

RESUMEN

Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

3.
Opt Lett ; 40(7): 1254-7, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831306

RESUMEN

We demonstrate field-induced 2D-photonic liquid crystals (LC). The 2D spatially periodic modulation of the LC director field is achieved using a geometry with two crossed interdigitated systems of electrodes located at opposite sides of the LC layer. With a special method of dual-field driving, a very fast switching between different spatially periodic LC director distributions is achieved. The director field distribution and potential use of these photonic crystals for fast switched multidirectional lasing is discussed.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061707, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17677283

RESUMEN

Using both numerical simulations and an approximate analytical theory we describe a flexoelectric-induced instability in a thin nematic liquid crystal layer with asymmetric boundary conditions subjected to an applied electric field. The dependence of the threshold value of the electric field on principal material parameters of the nematic liquid crystal and the director distribution in different regions of the cell have been studied in detail numerically. The results have been compared with a simple analytical theory that enables us to obtain explicit expressions for the threshold electric field and the period of modulation above the threshold. It has been found that in the hybrid aligned nematic cell with homeotropic anchoring on one surface and planar homogeneous anchoring on the other surface, a periodic flexoelectric-induced domain structure appears, above a critical threshold, with a chiral director distribution. The director rotates about the alignment axis when moving along a perpendicular direction in the plane of the cell. The absolute value of the threshold field has been found to depend on the direction of the field due to the initial symmetry of the hybrid aligned cell and the presence of flexoelectricity.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 1): 051715, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16089559

RESUMEN

The insulating layers used for the alignment of ferroelectric liquid crystals (FLC) in electro-optical cells usually have non-negligible thickness and their capacitance determines the type of the director switching caused by a triangular-form external voltage U(tr) . With decreasing frequency of U(tr) , the hysteresis in a switching direction changes from the normal to the abnormal one at a characteristic hysteresis inversion frequency f(i) . In the vicinity of f(i) , the electro-optical response is thresholdless and the optical transmission manifests the V -shape field dependence. The V -shape regime is very interesting for certain applications, in particular to microdisplays due to a possibility of the gray scale realization. However, f(i) has to be enhanced from the usually observed frequency of a few Hz up to the range of hundreds of Hz. To this effect, a special FLC material has been designed and its basic properties (tilt angle, spontaneous polarization, rotational viscosity, and electric conductivity) have been measured over the entire range of the smectic-C* phase. Upon variation of cell parameters (thickness of both the FLC and alignment layers), temperature, and external voltage, the frequency of the V -shape effect as high as 150-1000 Hz (in the temperature range 30-75 degrees C) has been found experimentally. The operating voltage remains lower than 8 V. A quantitative interpretation of these results has been done using the modeling procedure developed earlier [S.P. Palto, Cryst. Rep. 48, 124 (2003)]. The modeling has been performed with the experimental values of the FLC material and the cell parameters and has shown very good agreement with experiment. The key point of this approach is consideration of the internal voltage on the FLC layer, the sign, amplitude, and form of which differ from U(tr) . The results of the modeling allow further improvement of the performance of electro-optical FLC cells for high frequency V-shape effect.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 1): 021701, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12241190

RESUMEN

The thresholdless, hysteresis-free V-shape electro-optical switching in surface-stabilized ferroelectric liquid crystals, observed usually with a triangular voltage form, has been shown to be rather an apparent and not a real effect. Strictly speaking, it is observed only at one characteristic frequency f(i) and is accompanied by an inversion of the electro-optical hysteresis direction from the normal to the abnormal one. The switching of the director in a liquid crystal layer at f(i), in reality, has a threshold and a normal hysteresis. Even the optical transmittance shows a hysteresis at f(i) when it is plotted as a function of the voltage on the liquid crystal layer and not as a function of the total voltage on the liquid crystal cell which always includes the inner insulating layers. Due to these layers, a voltage divider is formed which includes the capacitance of the insulating layers and the dynamic impedance (capacitance and resistance) of the ferroelectric liquid crystal layer. The new explanation has been confirmed by experiments with different ferroelectric liquid crystal cells combined with external resistors and capacitors and by measurements of a strong dependence of f(i) on the liquid crystal resistance which was varied over three orders of magnitude. A theoretical analysis of the problem has also been made using certain approximations for material parameters and the space dependence of the sine form of the electric field in the liquid crystal layer. The conclusions are qualitatively consistent with the experimental results. Finally, the dynamic problem has been solved numerically by taking into account of all the relevant parameters (in the absence of flow and irregularities in the cell plane) and the obtained results are in excellent correspondence with the experiment. This has been demonstrated for sets of material and cell parameters providing the best V-shape performance.

7.
Opt Lett ; 25(6): 411-3, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18059896

RESUMEN

Optical second-harmonic generation (SHG) is used as a noninvasive probe of two-dimensional (2D) ferroelectricity in Langmuir-Blodgett (LB) films of the copolymer vinylidene fluoride with trifluoroethylene. The surface 2D ferroelectric-paraelectric phase transition in the topmost layer of the LB films and a thickness-independent (almost 2D) transition in the bulk of these films are observed in temperature studies of SHG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA