Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36770435

RESUMEN

The present work investigates the influence of isothermal annealing on the microstructure and oxidation behavior of nanocomposite coatings. AlTiSiN/TiSiN coatings with TiSiN adhesive layer were deposited onto a high-speed steel substrate via physical vapor deposition. The coatings were investigated in the as-deposited state as well as after annealing in air at 700, 800, 900 and 1000 °C, respectively. The microstructure and morphology of the coatings were observed using scanning electron microscopy and transmission electron microscopy. The chemical composition and presence of oxidation products were studied by energy-dispersive X-ray spectroscopy. The phase identification was performed by means of X-ray diffraction. In the microstructure of the as-deposited coating, the (Ti1-xAlx)N particles were embedded in an amorphous Si3N4 matrix. TiO2 and SiO2 were found at all annealing temperatures, and Al2O3 was additionally identified at 1000 °C. It was found that, with increasing annealing temperature, the thickness of the oxide layer increased, and its morphology and chemical composition changed. At 700 and 800 °C, a Ti-Si-rich surface oxide layer was formed. At 900 and 1000 °C, an oxidized part of the coating was observed in addition to the surface oxide layer. Compared to the as-deposited sample, the oxidized samples exhibited considerably worse mechanical properties.

2.
Materials (Basel) ; 15(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36295278

RESUMEN

In the present work, the microstructure, phase constitution, and corrosion behavior of binary Sn-xZn alloys (x = 5, 9 and 15 wt.%) were investigated. The alloys were prepared by induction melting of Sn and Zn lumps in argon. After melting, the alloys were solidified to form cast cylinders. The Sn-9Zn alloy had a eutectic microstructure. The Sn-5Zn and Sn-15Zn alloys were composed of dendritic (Sn) or (Zn) and eutectic. The corrosion behavior of the Sn-Zn alloys was studied in aqueous HCl (1 wt.%) and NaCl (3.5 wt.%) solutions at room temperature. Corrosion potentials and corrosion rates in HCl were significantly higher compared to NaCl. The corrosion of the binary Sn-Zn alloys was found to take place by a galvanic mechanism. The chemical composition of the corrosion products formed on the Sn-Zn alloys changed with the Zn weight fraction. Alloys with a higher concentration of Zn (Sn-9Zn, Sn-15Zn) formed corrosion products rich in Zn. The Zn-rich corrosion products were prone to spallation. The corrosion rate in the HCl solution decreased with decreasing weight fraction of Zn. The Sn-5Zn alloy had the lowest corrosion rate. The corrosion resistance in HCl could be considerably improved by reducing the proportion of zinc in Sn-Zn alloys.

3.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35683642

RESUMEN

Magnetic separation of microalgae using magnetite is a promising harvesting method as it is fast, reliable, low cost, energy-efficient, and environmentally friendly. In the present work, magnetic harvesting of three green algae (Chlorella vulgaris, Chlorella ellipsoidea, and Auxenochlorella protothecoides) and one cyanobacteria (Microcystis aeruginosa) has been studied. The biomass was flushed with clean air using a 0.22 µm filter and fed CO2 for accelerated growth and faster reach of the exponential growth phase. The microalgae were harvested with magnetite nanoparticles. The nanoparticles were prepared by controlled co-precipitation of Fe2+ and Fe3+ cations in ammonia at room temperature. Subsequently, the prepared Fe3O4 nanoparticles were coated with polyethyleneimine (PEI). The prepared materials were characterized by high-resolution transmission electron microscopy, X-ray diffraction, magnetometry, and zeta potential measurements. The prepared nanomaterials were used for magnetic harvesting of microalgae. The highest harvesting efficiencies were found for PEI-coated Fe3O4. The efficiency was pH-dependent. Higher harvesting efficiencies, up to 99%, were obtained in acidic solutions. The results show that magnetic harvesting can be significantly enhanced by PEI coating, as it increases the positive electrical charge of the nanoparticles. Most importantly, the flocculants can be prepared at room temperature, thereby reducing the production costs.

4.
Materials (Basel) ; 15(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35329477

RESUMEN

In the present work, the corrosion behavior of the Mg2Sn alloy (Mg66.7Sn33.3, concentration in at.%) has been studied. The alloy was prepared from high purity Sn and Mg lumps by induction melting in argon. The alloy was composed of intermetallic Mg2Sn with a small amount of Mg2Sn + (Sn) eutectic. The corrosion behavior was studied by hydrogen evolution, immersion, and potentiodynamic experiments. Three aqueous solutions of NaCl (3.5 wt.%), NaOH (0.1 wt.%) and HCl (0.1 wt.%) were chosen as corrosion media. The alloy was found to be cathodic with respect to metallic Mg and anodic with respect to Sn. The corrosion potentials of the Mg2Sn alloy were -1380, -1498 and -1361 mV vs. sat. Ag/AgCl in HCl, NaCl and NaOH solutions, respectively. The highest corrosion rate of the alloy, 92 mmpy, was found in aqueous HCl. The high corrosion rate was accompanied by massive hydrogen evolution on the alloy's surface. The corrosion rate was found to decrease sharply with increasing pH of the electrolyte. In the NaOH electrolyte, a passivation of the alloy was observed. The corrosion of the alloy involved a simultaneous oxidation of Mg and Sn. The main corrosion products on the alloy surface were MgSn(OH)6 and Mg(OH)2. The corrosion mechanism is discussed and implications for practical applications of the alloy are provided.

5.
Materials (Basel) ; 14(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34576643

RESUMEN

Complex metallic alloys (CMAs) are materials composed of structurally complex intermetallic phases (SCIPs). The SCIPs consist of large unit cells containing hundreds or even thousands of atoms. Well-defined atomic clusters are found in their structure, typically of icosahedral point group symmetry. In SCIPs, a long-range order is observed. Aluminum-based CMAs contain approximately 70 at.% Al. In this paper, the corrosion behavior of bulk Al-based CMAs is reviewed. The Al-TM alloys (TM = transition metal) have been sorted according to their chemical composition. The alloys tend to passivate because of high Al concentration. The Al-Cr alloys, for example, can form protective passive layers of considerable thickness in different electrolytes. In halide-containing solutions, however, the alloys are prone to pitting corrosion. The electrochemical activity of aluminum-transition metal SCIPs is primarily determined by electrode potential of the alloying element(s). Galvanic microcells form between different SCIPs which may further accelerate the localized corrosion attack. The electrochemical nobility of individual SCIPs increases with increasing concentration of noble elements. The SCIPs with electrochemically active elements tend to dissolve in contact with nobler particles. The SCIPs with noble metals are prone to selective de-alloying (de-aluminification) and their electrochemical activity may change over time as a result of de-alloying. The metal composition of the SCIPs has a primary influence on their corrosion properties. The structural complexity is secondary and becomes important when phases with similar chemical composition, but different crystal structure, come into close physical contact.

6.
Materials (Basel) ; 13(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679787

RESUMEN

In this work, the high temperature oxidation behavior of Al71Co29 and Al76Co24 alloys (concentration in at.%) is presented. The alloys were prepared by controlled arc-melting of Co and Al granules in high purity argon. The as-solidified alloys were found to consist of several different phases, including structurally complex m-Al13Co4 and Z-Al3Co phases. The high temperature oxidation behavior of the alloys was studied by simultaneous thermal analysis in flowing synthetic air at 773-1173 K. A protective Al2O3 scale was formed on the sample surface. A parabolic rate law was observed. The rate constants of the alloys have been found between 1.63 × 10-14 and 8.83 × 10-12 g cm-4 s-1. The experimental activation energies of oxidation are 90 and 123 kJ mol-1 for the Al71Co29 and Al76Co24 alloys, respectively. The oxidation mechanism of the Al-Co alloys is discussed and implications towards practical applications of these alloys at high temperatures are provided.

7.
Materials (Basel) ; 12(10)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121821

RESUMEN

The microstructure, phase constitution, and corrosion performance of as-solidified Al70Pd25Co5 and Al74Pd12Co14 alloys (element concentrations in at.%) have been investigated in the present work. The alloys were prepared by arc-melting of Al, Pd, and Co lumps in argon. The Al74Pd12Co14 alloy was composed of structurally complex εn phase, while the Al70Pd25Co5 alloy was composed of εn and δ phases. The corrosion performance was studied by open circuit potential measurements and potentiodynamic polarization in aqueous NaCl solution (3.5 wt.%). Marked open circuit potential oscillations of the Al70Pd25Co5 alloy have been observed, indicating individual breakdown and re-passivation events on the sample surface. A preferential corrosion attack of εn was found, while the binary δ phase (Al3Pd2) remained free of corrosion. A de-alloying of Al from εn and formation of intermittent interpenetrating channel networks occurred in both alloys. The corrosion behavior of εn is discussed in terms of its chemical composition and crystal structure. The corrosion activity of εn could be further exploited in preparation of porous Pd-Co networks with possible catalytic activity.

8.
Phys Chem Chem Phys ; 10(43): 6544-52, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18979039

RESUMEN

The impurity diffusion of Pr(3+) in dense polycrystalline LaMnO(3), LaCoO(3) and LaFeO(3) was studied at 1373-1673 K in air in order to investigate cation diffusion in these materials. Cation distribution profiles were measured by secondary-ion mass spectrometry and it was found that penetration profiles of Pr(3+) had two distinct regions with different slopes. The first, shallow region was used to evaluate the bulk diffusion coefficients. The activation energies for bulk diffusion of Pr(3+) in LaMnO(3), LaCoO(3) and LaFeO(3) were 126 +/- 6, 334 +/- 68 and 258 +/- 75 kJ mol(-1), respectively, which are significantly lower than previously predicted by atomistic simulations. The bulk diffusion of Pr(3+) in LaMnO(3) was enhanced compared to LaCoO(3) and LaFeO(3) due to higher concentrations of intrinsic point defects in LaMnO(3), especially La site vacancies. Grain-boundary diffusion coefficients of Pr(3+) in LaCoO(3) and LaFeO(3) materials were evaluated according to the Whipple-Le Claire equation. Activation energies for grain-boundary diffusion of Pr(3+) in LaCoO(3) and LaFeO(3) materials were 264 +/- 41 kJ mol(-1) and 290 +/- 36 kJ mol(-1) respectively. Finally, a correlation between activation energies for cation diffusion in bulk and along grain boundaries in pure and substituted LaBO(3) materials (B = Cr, Fe, Co) is discussed.

9.
J Phys Chem B ; 111(9): 2299-308, 2007 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-17295538

RESUMEN

Reaction kinetics between dense, polycrystalline pellets of La2O3 and CoO were investigated at temperatures of 1370-1673 K and oxygen partial pressures of 40 Pa - 50 kPa. At high oxygen partial pressures, single phase LaCoO3 was formed. The growth of the LaCoO3 phase followed the parabolic rate law. The location of Pt markers demonstrated that diffusion of Co3+ cations in LaCoO3 dominated over diffusion of La3+. The diffusion coefficient of Co3+ was determined from the parabolic rate constant, and an activation energy of (250 +/- 10) kJ mol-1 was found. The diffusion coefficient of Co3+ in LaCoO3 decreased with decreasing oxygen partial pressure. At the lowest oxygen partial pressure investigated, two product phases, LaCoO3 and La2CoO4, were observed. The diffusion coefficient of Co cations in La2CoO4 was estimated. Results were discussed in relation to cation diffusion in other LnBO3 oxides (B = Cr3+, Mn3+, Fe3+). A correlation between diffusion of the B cation and the melting point was found for LnBO3 materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA