Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ASAIO J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39255348

RESUMEN

The translational development of pediatric ventricular assist devices (VADs) lags years behind adult device options, negatively impacting pediatric patient outcomes. To address this need, we are developing a novel, series-flow, double-blood pump VAD that integrates an axial and centrifugal pump into a single device. The axial pump is used for initial circulatory assistance in younger patients; then, an internal activation mechanism triggers the centrifugal pump to activate in line with the axial pump, providing additional pressure and flow to match pediatric patient growth cycles. Here, we focused on the design and improvement of the device flow paths through computational analysis and in vitro hydraulic testing of a prototype. We estimated pressure-flow generation, fluid scalar stresses, and blood damage levels. In vitro hydraulic tests correlated well with shear stress transport (SST) predictions, with an average deviation of 4.5% for the complex, combined flow path. All data followed expected pump performance trends. The device exceeded target levels for blood damage in the blade tip clearances, and this must be both investigated and addressed in the next design phase. These study findings establish a strong foundation for the future development of the Drexel Double-Dragon VAD.

2.
Front Cardiovasc Med ; 9: 886874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990958

RESUMEN

Clinically-available blood pumps and total artificial hearts for pediatric patients continue to lag well behind those developed for adults. We are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). The hybrid TAH design integrates both an axial and centrifugal blood pump within a single, compact housing. The centrifugal pump rotates around the separate axial pump domain, and both impellers rotate around a common central axis. Here, we concentrate our development effort on the centrifugal blood pump by performing computational fluid dynamics (CFD) analysis of the blood flow through the pump. We also conducted transient CFD analyses (quasi-steady and transient rotational sliding interfaces) to assess the pump's dynamic performance conditions. Through modeling, we estimated the pressure generation, scalar stress levels, and fluid forces exerted on the magnetically levitated impellers. To further the development of the centrifugal pump, we also built magnetically-supported prototypes and tested these in an in vitro hydraulic flow loop and via 4-h blood bag hemolytic studies (n = 6) using bovine blood. The magnetically levitated centrifugal prototype delivered 0-6.75 L/min at 0-182 mmHg for 2,750-4,250 RPM. Computations predicted lower pressure-flow performance results than measured by testing; axial and radial fluid forces were found to be <3 N, and mechanical power usage was predicted to be <5 Watts. Blood damage indices (power law weighted exposure time and scalar stress) were <2%. All data trends followed expectations for the centrifugal pump design. Six peaks in the pressure rise were observed in the quasi-steady and transient simulations, correlating to the blade passage frequency of the 6-bladed impeller. The average N.I.H value (n = 6) was determined to be 0.09 ± 0.02 g/100 L, which is higher than desired and must be addressed through design improvement. These data serve as a strong foundation to build upon in the next development phase, whereby we will integrate the axial flow pump component.

3.
Artif Organs ; 46(8): 1475-1490, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35357020

RESUMEN

BACKGROUND: Mechanical circulatory support (MCS) devices, such as ventricular assist devices (VADs) and total artificial hearts (TAHs), have become a vital therapeutic option in the treatment of end-stage heart failure for adult patients. Such therapeutic options continue to be limited for pediatric patients. Clinicians initially adapted or scaled existing adult devices for pediatric patients; however, these adult devices are not designed to support the anatomical structure and varying flow capacities required for this population and are generally operated "off-design," which risks complications such as hemolysis and thrombosis. Devices designed specifically for the pediatric population which seek to address these shortcomings are now emerging and gaining FDA approval. METHODS: To analyze the competitive landscape of pediatric MCS devices, we conducted a systematic literature review. Approximately 27 devices were studied in detail: 8 were established or previously approved designs, and 19 were under development (11 VADs, 5 Fontan assist devices, and 3 TAHs). RESULTS: Despite significant progress, there is still no pediatric pump technology that satisfies the unique and distinct design constraints and requirements to support pediatric patients, including the wide range of patient sizes, increased cardiovascular demand with growth, and anatomic and physiologic heterogeneity of congenital heart disease. CONCLUSIONS: Forward-thinking design solutions are required to overcome these challenges and to ensure the translation of new therapeutic MCS devices for pediatric patients.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Insuficiencia Cardíaca , Corazón Artificial , Corazón Auxiliar , Niño , Insuficiencia Cardíaca/cirugía , Corazón Artificial/efectos adversos , Corazón Auxiliar/efectos adversos , Humanos , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA