Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(11): 111805, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516758

RESUMEN

The lung exhibits a robust, multifaceted regenerative response to severe injuries such as influenza infection, during which quiescent lung-resident epithelial progenitors participate in two distinct reparative pathways: functionally beneficial regeneration via alveolar type 2 (AT2) cell proliferation and differentiation, and dysplastic tissue remodeling via intrapulmonary airway-resident basal p63+ progenitors. Here we show that the basal cell transcription factor ΔNp63 is required for intrapulmonary basal progenitors to participate in dysplastic alveolar remodeling following injury. We find that ΔNp63 restricts the plasticity of intrapulmonary basal progenitors by maintaining either active or repressive histone modifications at key differentiation gene loci. Following loss of ΔNp63, intrapulmonary basal progenitors are capable of either airway or alveolar differentiation depending on their surrounding environment both in vitro and in vivo. Uncovering these regulatory mechanisms of dysplastic repair and lung basal cell fate choice highlight potential therapeutic targets to promote functional alveolar regeneration following severe lung injuries.


Asunto(s)
Gripe Humana , Lesión Pulmonar , Humanos , Células Epiteliales Alveolares/metabolismo , Pulmón/metabolismo , Diferenciación Celular , Gripe Humana/metabolismo , Células Epiteliales/metabolismo
2.
Elife ; 112022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36073526

RESUMEN

While the lung bears significant regenerative capacity, severe viral pneumonia can chronically impair lung function by triggering dysplastic remodeling. The connection between these enduring changes and chronic disease remains poorly understood. We recently described the emergence of tuft cells within Krt5+ dysplastic regions after influenza injury. Using bulk and single-cell transcriptomics, we characterized and delineated multiple distinct tuft cell populations that arise following influenza clearance. Distinct from intestinal tuft cells which rely on Type 2 immune signals for their expansion, neither IL-25 nor IL-4ra signaling are required to drive tuft cell development in dysplastic/injured lungs. In addition, tuft cell expansion occurred independently of type I or type III interferon signaling. Furthermore, tuft cells were also observed upon bleomycin injury, suggesting that their development may be a general response to severe lung injury. While intestinal tuft cells promote growth and differentiation of surrounding epithelial cells, in the lungs of tuft cell deficient mice, Krt5+ dysplasia still occurs, goblet cell production is unchanged, and there remains no appreciable contribution of Krt5+ cells into more regionally appropriate alveolar Type 2 cells. Together, these findings highlight unexpected differences in signals necessary for murine lung tuft cell amplification and establish a framework for future elucidation of tuft cell functions in pulmonary health and disease.


Asunto(s)
Citocinas , Gripe Humana , Animales , Bleomicina , Células Caliciformes , Humanos , Pulmón , Ratones
3.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33239293

RESUMEN

Acute respiratory distress syndrome is associated with a robust inflammatory response that damages the vascular endothelium, impairing gas exchange. While restoration of microcapillaries is critical to avoid mortality, therapeutic targeting of this process requires a greater understanding of endothelial repair mechanisms. Here, we demonstrate that lung endothelium possesses substantial regenerative capacity and lineage tracing reveals that native endothelium is the source of vascular repair after influenza injury. Ablation of chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF2) (Nr2f2), a transcription factor implicated in developmental angiogenesis, reduced endothelial proliferation, exacerbating viral lung injury in vivo. In vitro, COUP-TF2 regulates proliferation and migration through activation of cyclin D1 and neuropilin 1. Upon influenza injury, nuclear factor κB suppresses COUP-TF2, but surviving endothelial cells ultimately reestablish vascular homeostasis dependent on restoration of COUP-TF2. Therefore, stabilization of COUP-TF2 may represent a therapeutic strategy to enhance recovery from pathogens, including H1N1 influenza and SARS-CoV-2.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Pulmón/citología , Pulmón/fisiología , Infecciones por Orthomyxoviridae/metabolismo , Regeneración/genética , Animales , Factor de Transcripción COUP II/genética , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/virología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA