Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37763386

RESUMEN

Recently, the development of tandem devices has become one of the main strategies for further improving the efficiency of photovoltaic modules. In this regard, combining well-established Si technology with thin film technology is one of the most promising approaches. However, this imposes several limitations on such thin film technology, such as low prices, the absence of scarce or toxic elements, the possibility to tune optical properties and long lifetime stability. Therefore, to show the potential of kesterite/silicon tandems, in this work, a 2 terminal (2T) structure using pure germanium kesterite was simulated with combined SCAPS and transfer matrix methods. To explore the impact of individual modifications, a stepwise approach was adopted to improve the kesterite. For the bottom sub cell, a state-of-the-art silicon PERC cell was used with an efficiency of 24%. As a final result, 19.56% efficiency was obtained for the standalone top kesterite solar cell and 28.6% for the tandem device, exceeding standalone silicon efficiency by 4.6% and justifying a new method for improvement. The improvement observed could be attributed primarily to the enhanced effective lifetime, optimized base doping, and mitigated recombination at both the back and top layers of the CZGSSe absorber. Finally, colorimetric analysis showed that color purity for such tandem structure was low, and hues were limited to the predominant colors, which were reddish, yellowish, and purple in an anti-reflective coating (ARC) thickness range of 20-300 nm. The sensitivity of color variation for the whole ARC thickness range to electrical parameters was minimal: efficiency was obtained ranging from 28.05% to 28.63%.

2.
Molecules ; 26(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34443677

RESUMEN

The aim of this investigation was to synthesize high porosity TiO2 aerogel by applying sol-gel and subcritical drying methods and to identify the influence of reagent's nature and synthesis conditions on their structural and optical properties. Methods of XRD, FT-IR, BET, STA, SEM, and UV-vis were applied to investigate and compare the properties of synthesized TiO2 aerogels and to determine the most effective synthesis route. The structural parameters of the synthesized materials can be varied by changing the precursor type (titanium (IV), isopropoxide (TIP), or tetrabutylorthotitanate (TBOT)) and the nature of the solvent used for additional exchange (n-hexane (nH), cyclohexane (CH), or diethyl ether (DE)). All of the subcritical dried samples show the amorphous structure, which tends to crystallize into the anatase phase after calcination. The number of micro and mesopores and the specific surface area depends on the synthesis conditions. The pores with the highest diameter have been found for additionally nH exchanged and aged aerogel synthesized from precursor TIP. Despite the imperfections in the structure, the produced aerogels show structural and optical properties typical of the TiO2 structures mentioned in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA