Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Vis Comput Graph ; 27(4): 2313-2328, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31634135

RESUMEN

São Paulo is the largest city in South America, with crime rates that reflect its size. The number and type of crimes vary considerably around the city, assuming different patterns depending on urban and social characteristics of each particular location. Previous works have mostly focused on the analysis of crimes with the intent of uncovering patterns associated to social factors, seasonality, and urban routine activities. Therefore, those studies and tools are more global in the sense that they are not designed to investigate specific regions of the city such as particular neighborhoods, avenues, or public areas. Tools able to explore specific locations of the city are essential for domain experts to accomplish their analysis in a bottom-up fashion, revealing how urban features related to mobility, passersby behavior, and presence of public infrastructures (e.g., terminals of public transportation and schools) can influence the quantity and type of crimes. In this paper, we present CrimAnalyzer, a visual analytic tool that allows users to study the behavior of crimes in specific regions of a city. The system allows users to identify local hotspots and the pattern of crimes associated to them, while still showing how hotspots and corresponding crime patterns change over time. CrimAnalyzer has been developed from the needs of a team of experts in criminology and deals with three major challenges: i) flexibility to explore local regions and understand their crime patterns, ii) identification of spatial crime hotspots that might not be the most prevalent ones in terms of the number of crimes but that are important enough to be investigated, and iii) understand the dynamic of crime patterns over time. The effectiveness and usefulness of the proposed system are demonstrated by qualitative and quantitative comparisons as well as by case studies run by domain experts involving real data. The experiments show the capability of CrimAnalyzer in identifying crime-related phenomena.

2.
IEEE Trans Image Process ; 28(12): 6154-6168, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31283507

RESUMEN

Optimal transport has emerged as a promising and useful tool for supporting modern image processing applications such as medical imaging and scientific visualization. Indeed, the optimal transport theory enables great flexibility in modeling problems related to image registration, as different optimization resources can be successfully used as well as the choice of suitable matching models to align the images. In this paper, we introduce an automated framework for fundus image registration which unifies optimal transport theory, image processing tools, and graph matching schemes into a functional and concise methodology. Given two ocular fundus images, we construct representative graphs which embed in their structures spatial and topological information from the eye's blood vessels. The graphs produced are then used as input by our optimal transport model in order to establish a correspondence between their sets of nodes. Finally, geometric transformations are performed between the images so as to accomplish the registration task properly. Our formulation relies on the solid mathematical foundation of optimal transport as a constrained optimization problem, being also robust when dealing with outliers created during the matching stage. We demonstrate the accuracy and effectiveness of the present framework throughout a comprehensive set of qualitative and quantitative comparisons against several influential state-of-the-art methods on various fundus image databases.


Asunto(s)
Técnicas de Diagnóstico Oftalmológico , Procesamiento de Imagen Asistido por Computador/métodos , Vasos Retinianos/diagnóstico por imagen , Bases de Datos Factuales , Fondo de Ojo , Humanos , Interpretación de Imagen Asistida por Computador
3.
IEEE Trans Vis Comput Graph ; 16(2): 338-49, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20075492

RESUMEN

Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving (divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the sum of three uniquely defined components: curl free, divergence free and harmonic. This decomposition is usually achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.


Asunto(s)
Algoritmos , Gráficos por Computador , Modelos Teóricos , Reología/métodos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA