Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(3): 1136-1155, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38038252

RESUMEN

Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.


Asunto(s)
Centrómero , Roturas del ADN de Doble Cadena , Chaperonas Moleculares , Proteínas Nucleares , Estructuras R-Loop , Proteína Nuclear Ligada al Cromosoma X , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Centrómero/metabolismo , Cromatina , Proteínas Co-Represoras/metabolismo , ADN , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo
2.
Cells ; 11(5)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269420

RESUMEN

DNA damage in cells can occur physiologically or may be induced by exogenous factors. Genotoxic damage may cause cancer, ageing, serious developmental diseases and anomalies. If the damage occurs in the germline, it can potentially lead to infertility or chromosomal and genetic aberrations in the developing embryo. Mammalian oocytes, the female germ cells, are produced before birth, remaining arrested at the prophase stage of meiosis over a long period of time. During this extensive state of arrest the oocyte may be exposed to different DNA-damaging insults for months, years or even decades. Therefore, it is of great importance to understand how these cells respond to DNA damage. In this review, we summarize the most recent developments in the understanding of the DNA damage response mechanisms that function in fully grown mammalian oocytes.


Asunto(s)
Infertilidad , Oocitos , Animales , Daño del ADN , Femenino , Mamíferos , Meiosis , Oocitos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA