Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Robot ; 9(94): eadp3260, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259781

RESUMEN

The loss of a hand disrupts the sophisticated neural pathways between the brain and the hand, severely affecting the level of independence of the patient and the ability to carry out daily work and social activities. Recent years have witnessed a rapid evolution of surgical techniques and technologies aimed at restoring dexterous motor functions akin to those of the human hand through bionic solutions, mainly relying on probing of electrical signals from the residual nerves and muscles. Here, we report the clinical implementation of an interface aimed at achieving this goal by exploiting muscle deformation, sensed through passive magnetic implants: the myokinetic interface. One participant with a transradial amputation received an implantation of six permanent magnets in three muscles of the residual limb. A truly self-contained myokinetic prosthetic arm embedding all hardware components and the battery within the prosthetic socket was developed. By retrieving muscle deformation caused by voluntary contraction through magnet localization, we were able to control in real time a dexterous robotic hand following both a direct control strategy and a pattern recognition approach. In just 6 weeks, the participant successfully completed a series of functional tests, achieving scores similar to those achieved when using myoelectric controllers, a standard-of-care solution, with comparable physical and mental workloads. This experience raised conceptual and technical limits of the interface, which nevertheless pave the way for further investigations in a partially unexplored field. This study also demonstrates a viable possibility for intuitively interfacing humans with robotic technologies.


Asunto(s)
Amputados , Miembros Artificiales , Fuerza de la Mano , Imanes , Diseño de Prótesis , Robótica , Humanos , Amputados/rehabilitación , Fuerza de la Mano/fisiología , Robótica/instrumentación , Masculino , Músculo Esquelético/fisiología , Extremidad Superior , Mano/fisiología , Adulto , Electromiografía , Muñones de Amputación/fisiopatología , Contracción Muscular/fisiología , Implantación de Prótesis
2.
IEEE Trans Biomed Eng ; 70(10): 2972-2979, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37141061

RESUMEN

OBJECTIVE: We recently proposed a new concept of human-machine interface to control hand prostheses which we dubbed the myokinetic control interface. Such interface detects muscle displacement during contraction by localizing permanent magnets implanted in the residual muscles. So far, we evaluated the feasibility of implanting one magnet per muscle and monitoring its displacement relative to its initial position. However, multiple magnets could actually be implanted in each muscle, as using their relative distance as a measure of muscle contraction could improve the system robustness against environmental disturbances. METHODS: Here, we simulated the implant of pairs of magnets in each muscle and we compared the localization accuracy of such system with the one magnet per muscle approach, considering first a planar and then an anatomically appropriate configuration. Such comparison was also performed when simulating different grades of mechanical disturbances applied to the system (i.e., shift of the sensor grid). RESULTS: We found that implanting one magnet per muscle always led to lower localization errors under ideal conditions (i.e., no external disturbances). Differently, when mechanical disturbances were applied, magnet pairs outperformed the single magnet approach, confirming that differential measurements are able to reject common mode disturbances. CONCLUSION: We identified important factors affecting the choice of the number of magnets to implant in a muscle. SIGNIFICANCE: Our results provide important guidelines for the design of disturbance rejection strategies and for the development of the myokinetic control interface, as well as for a whole range of biomedical applications involving magnetic tracking.


Asunto(s)
Magnetismo , Imanes , Humanos , Músculos , Contracción Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA