Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 241(2): 845-860, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37920100

RESUMEN

Specificity in plant-pathogen gene-for-gene (GFG) interactions is determined by the recognition of pathogen proteins by the products of plant resistance (R) genes. The evolutionary dynamics of R genes in plant-virus systems is poorly understood. We analyse the evolution of the L resistance locus to tobamoviruses in the wild pepper Capsicum annuum var. glabriusculum (chiltepin), a crop relative undergoing incipient domestication. The frequency, and the genetic and phenotypic diversity, of the L locus was analysed in 41 chiltepin populations under different levels of human management over its distribution range in Mexico. The frequency of resistance was lower in Cultivated than in Wild populations. L-locus genetic diversity showed a strong spatial structure with no isolation-by-distance pattern, suggesting environment-specific selection, possibly associated with infection by the highly virulent tobamoviruses found in the surveyed regions. L alleles differed in recognition specificity and in the expression of resistance at different temperatures, broad-spectrum recognition of P0 + P1 pathotypes and expression above 32°C being ancestral traits that were repeatedly lost along L-locus evolution. Overall, loss of resistance co-occurs with incipient domestication and broad-spectrum resistance expressed at high temperatures has apparent fitness costs. These findings contribute to understand the role of fitness trade-offs in plant-virus coevolution.


Asunto(s)
Capsicum , Resistencia a la Enfermedad , Humanos , Resistencia a la Enfermedad/genética , Temperatura , Alelos , México , Capsicum/genética , Enfermedades de las Plantas/genética
2.
Virus Res ; 241: 68-76, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28554561

RESUMEN

Understanding host-pathogen interactions requires analyses to address the multiplicity of scales in heterogeneous landscapes. Anthropogenic influence on plant communities, especially cultivation, is a major cause of environmental heterogeneity. We have approached the analysis of how environmental heterogeneity determines plant-virus interactions by studying virus infection in a wild plant currently undergoing incipient domestication, the wild pepper or chiltepin, across its geographical range in Mexico. We have shown previously that anthropogenic disturbance is associated with higher infection and disease risk, and with disrupted patterns of host and virus genetic spatial structure. We now show that anthropogenic factors, species richness, host genetic diversity and density in communities supporting chiltepin differentially affect infection risk according to the virus analysed. We also show that in addition to these factors, a broad range of abiotic and biotic variables meaningful to continental scales, have an important role on the risk of infection depending on the virus. Last, we show that natural virus infection of chiltepin plants in wild communities results in decreased survival and fecundity, hence negatively affecting fitness. This important finding paves the way for future studies on plant-virus co-evolution.


Asunto(s)
Capsicum/virología , Interacciones Huésped-Patógeno/fisiología , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Biodiversidad , Ecosistema , Variación Genética/genética , México
3.
Virus Evol ; 1(1): vev004, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27774278

RESUMEN

Current declines in biodiversity put at risk ecosystem services that are fundamental for human welfare. Increasing evidence indicates that one such service is the ability to reduce virus emergence. It has been proposed that the reduction of virus emergence occurs at two levels: through a reduction of virus prevalence/transmission and, as a result of these epidemiological changes, through a limitation of virus genetic diversity. Although the former mechanism has been studied in a few host-virus interactions, very little is known about the association between ecosystem biodiversity and virus genetic diversity. To address this subject, we estimated genetic diversity, synonymous and non-synonymous nucleotide substitution rates, selection pressures, and frequency of recombinants and re-assortants in populations of Pepper golden mosaic virus (PepGMV) and Pepper huasteco yellow vein virus (PHYVV) that infect chiltepin plants in Mexico. We then analyzed how these parameters varied according to the level of habitat anthropization, which is the major cause of biodiversity loss. Our results indicated that genetic diversity of PepGMV (but not of PHYVV) populations increased with the loss of biodiversity at higher levels of habitat anthropization. This was mostly the consequence of higher rates of synonymous nucleotide substitutions, rather than of adaptive selection. The frequency of recombinants and re-assortants was higher in PepGMV populations infecting wild chiltepin than in those infecting cultivated ones, suggesting that genetic exchange is not the main mechanism for generating genetic diversity in PepGMV populations. These findings provide evidence that biodiversity may modulate the genetic diversity of plant viruses, but it may differentially affect even two closely related viruses. Our analyses may contribute to understanding the factors involved in virus emergence.

4.
J Virol ; 88(6): 3359-68, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24390328

RESUMEN

UNLABELLED: Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino Mosaic Virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natural populations of wild tomatoes in southern Peru for PepMV infection. PepMV incidence, genetic variation, population structure, and accumulation in various hosts were analyzed. PepMV incidence in wild tomatoes was high, and a strain not yet reported in domestic tomato was characterized. This strain had a wide host range within the Solanaceae, multiplying efficiently in most assayed Solanum species and being adapted to wild tomato hosts. Conversely, PepMV isolates from tomato crops showed evidence of adaptation to domestic tomato, possibly traded against adaptation to wild tomatoes. Phylogenetic reconstructions indicated that the most probable ancestral sequence came from a wild Solanum species. A high incidence of PepMV in wild tomato relatives would favor virus spread to crops and its efficient multiplication in different Solanum species, including tomato, allowing its establishment as an epidemic pathogen. Later, adaptation to tomato, traded off against adaptation to other Solanum species, would isolate tomato populations from those in other hosts. IMPORTANCE: Virus emergence is a complex phenomenon involving multiple ecological and genetic factors and is considered to involve three phases: virus encounter with the new host, virus adaptation to the new host, and changes in the epidemiological dynamics. We analyze here if this was the case in the recent emergence of Pepino Mosaic Virus (PepMV) in tomato crops worldwide. We characterized a new strain of PepMV infecting wild tomato populations in Peru. Comparison of this strain with PepMV isolates from tomato crops, plus phylogenetic reconstructions, supports a scenario in which PepMV would have spread to crops from wild tomato relatives, followed by adaptation to the new host and eventually leading to population isolation. Our data, which derive from the analysis of field isolates rather than from experimental evolution approaches, significantly contribute to understanding of plant virus emergence, which is necessary for its anticipation and prevention.


Asunto(s)
Enfermedades de las Plantas/virología , Potexvirus/genética , Potexvirus/aislamiento & purificación , Solanum lycopersicum/virología , Secuencia de Bases , Proteínas de la Cápside/genética , Ecología , Variación Genética , Datos de Secuencia Molecular , Perú , Filogenia , Potexvirus/clasificación , Potexvirus/fisiología
5.
PLoS One ; 8(7): e69218, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874917

RESUMEN

The Caribbean and Central America are among the regions with highest HIV-1B prevalence worldwide. Despite of this high virus burden, little is known about the timing and the migration patterns of HIV-1B in these regions. Migration is one of the major processes shaping the genetic structure of virus populations. Thus, reconstruction of epidemiological network may contribute to understand HIV-1B evolution and reduce virus prevalence. We have investigated the spatio-temporal dynamics of the HIV-1B epidemic in The Caribbean and Central America using 1,610 HIV-1B partial pol sequences from 13 Caribbean and 5 Central American countries. Timing of HIV-1B introduction and virus evolutionary rates, as well as the spatial genetic structure of the HIV-1B populations and the virus migration patterns were inferred. Results revealed that in The Caribbean and Central America most of the HIV-1B variability was generated since the 80 s. At odds with previous data suggesting that Haiti was the origin of the epidemic in The Caribbean, our reconstruction indicated that the virus could have been disseminated from Puerto Rico and Antigua. These two countries connected two distinguishable migration areas corresponding to the (mainly Spanish-colonized) Easter and (mainly British-colonized) Western islands, which indicates that virus migration patterns are determined by geographical barriers and by the movement of human populations among culturally related countries. Similar factors shaped the migration of HIV-1B in Central America. The HIV-1B population was significantly structured according to the country of origin, and the genetic diversity in each country was associated with the virus prevalence in both regions, which suggests that virus populations evolve mainly through genetic drift. Thus, our work contributes to the understanding of HIV-1B evolution and dispersion pattern in the Americas, and its relationship with the geography of the area and the movements of human populations.


Asunto(s)
Infecciones por VIH/epidemiología , VIH-1/clasificación , VIH-1/genética , Factores de Edad , Región del Caribe/epidemiología , América Central/epidemiología , Emigración e Inmigración , Evolución Molecular , Femenino , Variación Genética , Geografía Médica , Humanos , Masculino , Filogenia , Prevalencia , Análisis Espacio-Temporal , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética
6.
Arch Virol ; 155(5): 675-84, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20229325

RESUMEN

The characterization of viruses infecting wild plants is a key step towards understanding the ecology of plant viruses. In this work, the complete genomic nucleotide sequence of a new tymovirus species infecting chiltepin, the wild ancestor of Capsicum annuum pepper crops, in Mexico was determined, and its host range has been explored. The genome of 6,517 nucleotides has the three open reading frames described for tymoviruses, putatively encoding an RNA-dependent RNA polymerase, a movement protein and a coat protein. The 5' and 3' untranslated regions have structures with typical signatures of the tymoviruses. Phylogenetic analyses revealed that this new virus is closely related to the other tymoviruses isolated from solanaceous plants. Its host range is mainly limited to solanaceous species, which notably include cultivated Capsicum species. In the latter, infection resulted in a severe reduction of growth, indicating the potential of this virus to be a significant crop pathogen. The name of chiltepin yellow mosaic virus (ChiYMV) is proposed for this new tymovirus.


Asunto(s)
Capsicum/virología , Tymovirus/genética , Regiones no Traducidas 5' , Genoma Viral , México , Filogenia , ARN Viral/química , Tymovirus/clasificación , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA