Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931447

RESUMEN

Boronic acids form diester bonds with cis-hydroxyl groups in carbohydrates. The formation of these adducts could impair the physical and chemical properties of precursors, even their biological activity. Two carbohydrate derivatives from d-fructose and d-arabinose and phenylboronic acid were synthesized in a straightforward one-step procedure and chemically characterized via spectroscopy and X-ray diffraction crystallography. Additionally, an acute toxicity test was performed to determine their lethal dose 50 (LD50) values by using Lorke's method. Analytical chemistry assays confirmed the formation of adducts by the generation of diester bonds with the ß-d-pyranose of carbohydrates, including signals corresponding to the formation of new bonds, such as the stretching of B-O bonds. NMR spectra yielded information about the stereoselectivity in the synthesis reaction: Just one signal was found in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests showed that the LD50 value for both compounds was 1265 mg/kg, while the effective dose 50 (ED50) for sedation was 531 mg/kg. However, differences were found in the onset and lapse of sedation. For example, the arabinose derivative induced sedation for more than 48 h at 600 mg/kg, while the fructose derivative induced sedation for less than 6 h at the same dose without the death of the mice. Thus, we report for the first time two boron-containing carbohydrate derivatives inducing sedation after intraperitoneal administration. They are bioactive and highly safe agents. Further biological evaluation is desirable to explore their medical applications.

2.
Heliyon ; 10(1): e23517, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38332883

RESUMEN

In this work, the synthesis of BODIPY-phenyl-triazole labelled coumarins (BPhTCs) using a two-step approach is described. The influence of the BODIPY appending on the photophysical, electrochemical and thermal properties of the phenyl-triazole-coumarin precursors (PhTCs) was investigated. Band gap energies were measured by absorption spectroscopy (2.20 ± 0.02 eV in the solid and 2.35 ± 0.01 eV in solution) and cyclic voltammetry (2.10 ± 0.05 eV). The results are supported by DFT calculations confirming the presence of lowest LUMO levels that facilitate the electron injection and stabilize the electron transport. Their charge-transport parameters were measured in Organic Field-Effect Transistor (OFET) devices. BPhTCs showed an ambipolar transistor behavior with good n-type charge mobilities (10-2 cm2V-1s-1) allowing these derivatives to be employed as promising semiconducting crystalline and fluorescent materials with good thermal and air stability up to 250 °C.

3.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298442

RESUMEN

(Thio)ureas ((T)Us) and benzothiazoles (BTs) each have demonstrated to have a great variety of biological activities. When these groups come together, the 2-(thio)ureabenzothizoles [(T)UBTs] are formed, improving the physicochemical as well as the biological properties, making these compounds very interesting in medicinal chemistry. Frentizole, bentaluron and methabenzthiazuron are examples of UBTs used for treatment of rheumatoid arthritis and as wood preservatives and herbicides in winter corn crops, respectively. With this antecedent, we recently reported a bibliographic review about the synthesis of this class of compounds, from the reaction of substituted 2-aminobenzothiazoles (ABTs) with iso(thio)cyanates, (thio)phosgenes, (thio)carbamoyl chlorides, 1,1'-(thio)carbonyldiimidazoles, and carbon disulfide. Herein, we prepared a bibliographic review about those features of design, chemical synthesis, and biological activities relating to (T)UBTs as potential therapeutic agents. This review is about synthetic methodologies generated from 1968 to the present day, highlighting the focus to transform (T)UBTs to compounds containing a range substituents, as illustrated with 37 schemes and 11 figures and concluded with 148 references. In this topic, the scientists dedicated to medicinal chemistry and pharmaceutical industry will find useful information for the design and synthesis of this interesting group of compounds with the aim of repurposing these compounds.


Asunto(s)
Benzotiazoles , Urea , Benzotiazoles/química , Cianatos
4.
Curr Org Synth ; 20(2): 177-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35272598

RESUMEN

Benzimidazole (BI) and its derivatives are interesting molecules in medicinal chemistry because several of these compounds have a diversity of biological activities and some of them are even used in clinical applications. In view of the importance of these compounds, synthetic chemists are still interested in finding new procedures for the synthesis of these classes of compounds. Astemizole (antihistaminic), Omeprazole (antiulcerative), and Rabendazole (fungicide) are important examples of compounds used in medicinal chemistry containing BI nuclei. It is interesting to observe that several of these compounds contain 2-aminobenzimidazole (2ABI) as the base nucleus. The structures of 2ABI derivatives are interesting because they have a planar delocalized structure with a cyclic guanidine group, which have three nitrogen atoms with free lone pairs and labile hydrogen atoms. The 10-π electron system of the aromatic BI ring conjugated with the nitrogen lone pair of the hexocyclic amino group, making these heterocycles to have an amphoteric character. Synthetic chemists have used 2ABI as a building block to produce BI derivatives as medicinally important molecules. In view of the importance of the BIs, and because no review was found in the literature about this topic, we reviewed and summarized the procedures related to the recent methodologies used in the N-substitution reactions of 2ABIs by using aliphatic and aromatic halogenides, dihalogenides, acid chlorides, alkylsulfonic chlorides, carboxylic acids, esters, ethyl chloroformates, anhydrides, SMe-isothioureas, alcohols, alkyl cyanates, thiocyanates, carbon disulfide and aldehydes or ketones to form Schiff bases. The use of diazotized 2ABI as intermediate to obtain 2-diazoBIs was included to produce Nsubstituted 2ABIs of pharmacological interest. Some commentaries about their biological activity were included.


Asunto(s)
Bencimidazoles , Farmacóforo , Aldehídos , Nitrógeno
5.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234805

RESUMEN

Benzimidazole is an important heterocyclic fragment, present in many biologically active compounds with a great variety of therapeutic purposes. Most of the benzimidazole activities are explained through the existence of 1,3-tautomeric equilibrium. As the binding affinity of each tautomer to a protein target depends on an established bioactive conformation, the effect of tautomers on the ligand protein binding mechanism is determinant. In this work, we searched and analyzed a series of reported 13C-NMR spectra of benzazoles and benzazolidine-2-thiones with the purpose of estimating their tautomeric equilibrium. Herein, several approaches to determine this problem are presented, which makes it a good initial introduction to the non-expert reader. This chemical shift difference and C4/C7 signals of benzimidazolidine-2-thione and 1-methyl-2-thiomethylbenzimidazole as references were used in this work to quantitatively calculate, in solution, the pyrrole-pyridine tautomeric ratio in equilibrium. The analysis will help researchers to correctly assign the chemical shifts of benzimidazoles and to calculate their intracyclic or exocyclic tautomeric ratio as well as mesomeric proportion in benzimidazoles.


Asunto(s)
Bencimidazoles , Tionas , Bencimidazoles/química , Ligandos , Piridinas , Pirroles
6.
Molecules ; 27(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36144837

RESUMEN

The (thio)urea and benzothiazole (BT) derivatives have been shown to have a broad spectrum of biological activities. These groups, when bonded, result in the 2-(thio)ureabenzothizoles (TBT and UBT), which could favor the physicochemical and biological properties. UBTs and TBTs are compounds of great importance in medicinal chemistry. For instance, Frentizole is a UBT derivative used for the treatment of rheumatoid arthritis and systemic lupus erythematosus. The UBTs Bentaluron and Bethabenthiazuron are commercial fungicides used as wood preservatives and herbicides in winter corn crops. On these bases, we prepared this bibliography review, which covers chemical aspects of UBTs and TBTs as potential therapeutic agents as well as their studies on the mechanisms of a variety of pharmacological activities. This work covers synthetic methodologies from 1935 to nowadays, highlighting the most recent approaches to afford UBTs and TBTs with a variety of substituents as illustrated in 42 schemes and 13 figures and concluded with 187 references. In addition, this interesting review is designed on chemical reactions of 2-aminobenzothiazoles (2ABTs) with (thio)phosgenes, iso(thio)cyanates, 1,1'-(thio)carbonyldiimidazoles [(T)CDI]s, (thio)carbamoyl chlorides, and carbon disulfide. This topic will provide information of utility for medicinal chemists dedicated to the design and synthesis of this class of compounds to be tested with respect to their biological activities and be proposed as new pharmacophores.


Asunto(s)
Disulfuro de Carbono , Fungicidas Industriales , Herbicidas , Benzotiazoles/farmacología , Cloruros , Cianatos , Fungicidas Industriales/farmacología , Herbicidas/farmacología , Urea
7.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744802

RESUMEN

Intramolecular charge transfer (ICT) effects are responsible for the photoluminescent properties of coumarins. Hence, optical properties with different applications can be obtained by ICT modulation. Herein, four 3-acetyl-2H-chromen-2-ones (1a-d) and their corresponding fluorescent hybrids 3- (phenylhydrazone)-chromen-2-ones (2a-d) were synthesized in 74-65% yields. The UV-Vis data were in the 295-428 nm range. The emission depends on the substituent in position C-7 bearing electron-donating groups. Compounds 1b-d showed good optical properties due to the D-π-A structural arrangement. In compounds 2a-d, there is a quenching effect of fluorescence in solution. However, in the solid, an increase is shown due to an aggregation-induced emission (AIE) effect given by the rotational restraints and stacking in the crystal. Computational calculations of the HOMO-LUMO orbitals indicate high absorbance and emission values of the molecules, and gap values represent the bathochromic effect and the electronic efficiency of the compounds. Compounds 1a-d and 2a-d are good candidates for optical applications, such as OLEDs, organic solar cells, or fluorescence markers.


Asunto(s)
Cumarinas , Electrones , Cumarinas/química , Teoría Funcional de la Densidad , Espectrometría de Fluorescencia
8.
Pharmaceuticals (Basel) ; 15(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35745608

RESUMEN

Breast cancer (BC) is the most frequently diagnosed cancer and is the second-most common cause of death in women worldwide. Because of this, the search for new drugs and targeted therapy to treat BC is an urgent and global need. Histone deacetylase 6 (HDAC6) is a promising anti-BC drug target associated with its development and progression. In the present work, the design and synthesis of a new family of dihydropyrazole-carbohydrazide derivatives (DPCH) derivatives focused on HDAC6 inhibitory activity is presented. Computational chemistry approaches were employed to rationalize the design and evaluate their physicochemical and toxic-biological properties. The new family of nine DPCH was synthesized and characterized. Compounds exhibited optimal physicochemical and toxicobiological properties for potential application as drugs to be used in humans. The in silico studies showed that compounds with -Br, -Cl, and -OH substituents had good affinity with the catalytic domain 2 of HDAC6 like the reference compounds. Nine DPCH derivatives were assayed on MCF-7 and MDA-MB-231 BC cell lines, showing antiproliferative activity with IC50 at µM range. Compound 2b showed, in vitro, an IC50 value of 12 ± 3 µM on human HDAC6. The antioxidant activity of DPCH derivatives showed that all the compounds exhibit antioxidant activity similar to that of ascorbic acid. In conclusion, the DPCH derivatives are promising drugs with therapeutic potential for the epigenetic treatment of BC, with low cytotoxicity towards healthy cells and important antioxidant activity.

9.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35328650

RESUMEN

Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Animales , Cognición , Masculino , Melatonina/farmacología , Melatonina/uso terapéutico , Ratas , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT2 , Triptófano
10.
Molecules ; 26(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34770926

RESUMEN

Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.

11.
Pharmaceuticals (Basel) ; 14(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071735

RESUMEN

Myeloperoxidase (MPO) is an enzyme present in human neutrophils, whose main role is to provide defenses against invading pathogens. However, highly reactive oxygen species (ROS), such as HOCl, are generated from MPO activity, leading to chronic diseases. Herein, we report the microwave-assisted synthesis of a new series of stable (E)-(2-hydroxy)-α-aminocinnamic acids, in good yields, which are structurally analogous to the natural products (Z)-2-hydroxycinnamic acids. The radical scavenging activity (RSA), MPO inhibitory activity and cytotoxicity of the reported compounds were evaluated. The hydroxy derivatives showed the most potent RSA, reducing the presence of DPPH and ABTS radicals by 77% at 0.32 mM and 100% at 0.04 mM, respectively. Their mechanism of action was modeled with BDEOH, IP and ΔEH-L theoretical calculations at the B3LYP/6 - 31 + G(d,p) level. Compounds showed in vitro inhibitory activity of MPO with IC50 values comparable to indomethacin and 5-ASA, but cytotoxicities below 15% at 100-200 µM. Docking calculations revealed that they reach the amino acid residues present in the distal cavity of the MPO active site, where both the amino and carboxylic acid groups of the α-aminopropenoic acid arm are structural requirements for anchoring. (E)-2-hydroxy-α-aminocinnamic acids have been synthesized for the first time with a reliable method and their antioxidant properties demonstrated.

12.
Pharmaceutics ; 12(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096739

RESUMEN

A new organic salt of metformin, an antidiabetic drug, and N,N'-(1,4-phenylene)dioxalamic acid, was mechanochemically synthesized, purified by crystallization from solution and characterized by single X-ray crystallography. The structure revealed a salt-type crystal hydrate composed of one dicationic metformin unit, two monoanionic units of the acid and four water molecules, namely H2Mf(HpOXA)2∙4H2O. X-ray powder, IR, 13C-CPMAS, thermal and BET adsorption-desorption analyses were performed to elucidate the structure of the molecular and supramolecular structure of the anhydrous microcrystalline mesoporous solid H2Mf(HpOXA)2. The results suggest that their structures, conformation and hydrogen bonding schemes are very similar. To the best of our knowledge, the selective formation of the monoanion HpOXA-, as well as its structure in the solid, is herein reported for the first time. Regular O(δ-)∙∙∙C(δ), O(δ-)∙∙∙N+ and bifacial O(δ-)∙∙∙C(δ)∙∙∙O(δ-) of n→π * charge-assisted interactions are herein described in H2MfA organic salts which could be responsible of the interactions of metformin in biologic systems. The results support the participation of n→π * charge-assisted interactions independently, and not just as a short contact imposed by the geometric constraint due to the hydrogen bonding patterns.

13.
Bioorg Med Chem ; 28(9): 115427, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32205045

RESUMEN

Being the base of several non-communicable diseases, including cancer, inflammation is a complex process generated by tissue damage or change in the body homeostatic state. Currently, the therapeutic treatment for chronic inflammation related diseases is based on the use of selective cyclooxygenase II enzyme, COX-2, inhibitors or Coxibs, which have recently regained attention giving their preventive role in colon cancer. Thus, the discovery of new molecules that selectively inhibit COX-2 and other inflammatory mediators is a current challenge in the medicinal chemistry field. 1-Phenylbenzimidazoles have shown potential COX inhibitory activity, because they can reproduce the interaction profile of known COX inhibitors. Therefore, in the present investigation a series of 1,2-diphenylbenzimidazoles (DPBI) with different aromatic substitutions in the para position were synthesized and their interaction with COX-2 and nitric oxide synthase, iNOS, was determined in silico, in vitro and in vivo. Compound 2-(4-bromophenyl)-1-(4-nitrophenyl)-1H-benzo[d]imidazole showed the best inhibition towards COX-2, while compounds N-(4-(2-(4-bromophenyl)-1H-benzo[d]imidazol-1-yl)phenyl)acetamide and N-(4-(2-(4-chlorophenyl)-1H-benzo[d]imidazol-1-yl)phenyl)acetamide diminished the production of NO in vitro. Additionally, they had a significant anti-inflammatory activity in vivo when given orally.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Bencimidazoles/farmacología , Inhibidores Enzimáticos/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Bencimidazoles/síntesis química , Bencimidazoles/química , Bovinos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Edema/tratamiento farmacológico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Inflamación/tratamiento farmacológico , Masculino , Estructura Molecular , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Wistar , Relación Estructura-Actividad
14.
Mol Divers ; 24(4): 1-14, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31664610

RESUMEN

11-Beta hydroxysteroid dehydrogenase type 1 (11ß-HSD1) regulates cortisol levels mainly in adipose, hepatic and brain tissues. There is a relationship between the high activity of this enzyme and the development of obesity and metabolic disorders. The inhibition of 11ß-HSD1 has been shown to attenuate the development of type 2 diabetes mellitus, insulin resistance, metabolic syndrome and other diseases mediated by excessive cortisol production. In this work, fifteen benzothiazole derivatives substituted with electron-withdrawing and electron-donating groups were designed to explore their affinity for 11ß-HSD1 using in silico methods. The results show that (E)-5-((benzo[d]thiazol-2-ylimino)(methylthio)methylamino)-2-hydroxybenzoic acid (C1) has good physicochemical properties and favorable interactions with 11ß-HSD1 through hydrogen bonding and hydrophobic interactions in the catalytic site formed by Y183, S170 and Y177. Furthermore, C1 was synthesized and evaluated in vitro and ex vivo using clobenzorex (CLX) as a reference drug in obese Zucker rats. The in vitro results showed that C1 was a better inhibitor of human 11ß-HSD1 than CLX. The ex vivo assay results demonstrated that C1 was capable of reducing 11ß-HSD1 overexpression in mesenteric adipose tissue. Therefore, C1 was able to decrease the activity and expression of 11ß-HSD1 better than CLX.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , Benzotiazoles/química , Benzotiazoles/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Anfetaminas/farmacología , Animales , Benzotiazoles/farmacología , Dominio Catalítico/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Enlace de Hidrógeno/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas , Ratas Zucker
15.
Molecules ; 24(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540462

RESUMEN

In this investigation, the reaction of 2-dithiomethylcarboimidatebenzothiazole with a series of six chiral amino-acids was studied. The reaction proceeds through the isolable sodium salt of SMe-isothiourea carboxylates as intermediates, whose reaction with methyl iodide in stirring DMF as solvent affords SMe-isothiourea methyl esters. The presence of water in the reaction leads to the corresponding urea carboxylates as isolable intermediates, whose methyl esters were obtained. Finally, the urea N-methyl amide derivatives were isolated when SMe-isothiourea or urea methyl esters were reacted with methylamine in the presence of water. The structures of synthesized compounds were established by 1H and 13C nuclear magnetic resonance and the structures of SMe-isothiourea methyl esters derived from (l)-glycine, (l)-alanine, (l)-phenylglycine, and (l)-leucine, by X-ray diffraction analysis. This methodology allows to functionalize 2-aminobenzothiazole with SMe-isothiourea, urea, and methylamide groups derived from chiral amino acids to get benzothiazole derivatives containing coordination sites and hydrogen bonding groups. Further research on the biological activities of some of these derivatives is ongoing.


Asunto(s)
Aminoácidos/química , Benzotiazoles/química , Tiourea/química
16.
J Mol Recognit ; 32(11): e2801, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31353677

RESUMEN

In the design of 1-phenylbenzimidazoles as model cyclooxygenase (COX) inhibitors, docking to a series of crystallographic COX structures was performed to evaluate their potential for high-affinity binding and to reproduce the interaction profile of well-known COX inhibitors. The effect of ligand-specific induced fit on the calculations was also studied. To quantitatively compare the pattern of interactions of model compounds to the profile of several cocrystallized COX inhibitors, a geometric parameter, denominated ligand-receptor contact distance (LRCD), was developed. The interaction profile of several model complexes showed similarity to the profile of COX complexes with inhibitors such as iodosuprofen, iodoindomethacin, diclofenac, and flurbiprofen. Shaping of high-affinity binding sites upon ligand-specific induced fit mostly determined both the affinity and the binding mode of the ligands in the docking calculations. The results suggest potential of 1-phenylbenzimidazole derivatives as COX inhibitors on the basis of their predicted affinity and interaction profile to COX enzymes. The analyses also provided insights into the role of induced fit in COX enzymes. While inhibitors produce different local structural changes at the COX ligand binding site, induced fit allows inhibitors in diverse chemical classes to share characteristic interaction patterns that ensure key contacts to be achieved. Different interaction patterns may also be associated with different inhibitory mechanisms.


Asunto(s)
Bencimidazoles/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Bencimidazoles/química , Cristalografía por Rayos X , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Bases de Datos de Proteínas , Indometacina/química , Indometacina/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Prostaglandina-Endoperóxido Sintasas/química , Termodinámica
17.
Mol Divers ; 23(2): 361-370, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30284107

RESUMEN

Bladder relaxation through drug administration is an interesting topic in medicinal and combinatorial chemistry. In fact, compounds targeting catecholamine receptors [dopamine receptors and beta-adrenergic receptors (ßAR) expressed in the bladder] are among the compounds commonly employed for this purpose. In particular, recent investigations have tended to focus on the ß3-adrenoceptor (ß3AR) as a target in the treatment of urinary incontinence and other disorders. However, organoboron compounds have been suggested as potent and efficient agents on these drug targets. In this work, through a docking study, we identified the parameters that induce a theoretical improvement in the affinity and activity of the organoboron compounds on the catecholamine receptors expressed in the bladder. Then, the identified potential drug, a boron-containing dopa-derivative named DPBX-L-Dopa, was synthesized and characterized. This compound induces a relaxation on the smooth muscle of the rat bladder, behaving as a weak relaxant compared to isoproterenol but with similar efficacy to BRL377, a selective ß3AR agonist. However, unexpectedly, this effect was not blocked by propranolol or haloperidol at the concentrations at which they are able to block the catecholamine receptors in bladder tissue. In view of these results, the effect of DPBX-L-Dopa compound on the alpha 1 adrenergic receptors (α1AR) of aorta of the rats was also explored; however, no response of the tissue to this compound was obtained. The possible mechanisms of the action of this compound were explored and are discussed further.


Asunto(s)
Boro , Dihidroxifenilalanina , Parasimpatolíticos , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Boro/química , Boro/farmacología , Dihidroxifenilalanina/química , Dihidroxifenilalanina/farmacología , Diseño de Fármacos , Técnicas In Vitro , Masculino , Modelos Moleculares , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Parasimpatolíticos/química , Parasimpatolíticos/farmacología , Ratas Wistar , Receptores de Catecolaminas , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiología
18.
Chem Cent J ; 12(1): 74, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29938351

RESUMEN

Dioxoisoindolines have been included as a pharmacophore group in diverse drug-like molecules with a wide range of biological activity. Various reports have shown that phthalimide derivatives are potent inhibitors of AChE, a key enzyme involved in the deterioration of the cholinergic system during the development of Alzheimer's disease. In the present study, 2-(2-(3,4-dimethoxyphenyl)ethyl)isoindoline-1,3-dione was synthesized, crystallized and evaluated as an AChE inhibitor. The geometric structure of the crystal and the theoretical compound (from molecular modeling) were analyzed and compared, finding a close correlation. The formation of the C6-H6···O19 interaction could be responsible for the non-negligible out of phenyl plane deviation of the C19 methoxy group, the O3 from the carbonyl group lead to C16-H16···O3i intermolecular interactions to furnish C(9) and C(14) infinite chains within the (- 4 0 9) and (- 3 1 1) families of planes. Finally, the biological experiments reveal that the isoindoline-1,3-dione exerts a good competitive inhibition on AChE (Ki = 0.33-0.93 mM; 95% confidence interval) and has very low acute toxicity (LD50 > 1600 mg/kg) compared to the AChE inhibitors currently approved for clinical use.

19.
Acta Crystallogr C Struct Chem ; 74(Pt 4): 428-436, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29620026

RESUMEN

A detailed structural analysis of the benzimidazole nitroarenes 1-(4-nitrophenyl)-1H-1,3-benzimidazole, C13H9N3O2, (I), 1-(4-nitrophenyl)-2-phenyl-1H-1,3-benzimidazole, C19H13N3O2, (II), and 2-(3-methylphenyl)-1-(4-nitrophenyl)-1H-1,3-benzimidazole, C20H15N3O2, (III), has been performed. They are nonplanar structures whose crystal arrangement is governed by Csp2-H...A (A = NO2, Npy and π) hydrogen bonding. The inherent complexity of the supramolecular arrangements of compounds (I) (Z' = 2) and (II) (Z' = 4) into tapes, helices and sheets is the result of the additional participation of π-πNO2 and n-π* (n = O and Npy; π* = Csp2 and NNO2) interactions that contribute to the stabilization of the equi-energetic conformations adopted by each of the independent molecules in the asymmetric unit. In contrast, compound (III) (Z' = 1) is self-paired, probably due to the effect of the steric demand of the methyl group on the crystal packing. Theoretical ab initio calculations confirmed that the presence of the arene ring at the benzimidazole 2-position increases the rotational barrier of the nitrobenzene ring and also supports the electrostatic nature of the orthogonal ONO...Csp2 and Npy...NO2 interactions.

20.
Molecules ; 22(3)2017 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-28287474

RESUMEN

The solventless synthesis of tris(pyrazolyl)phenylmethane ligands of formula C6H5C(PzR2)3 (R = H, Me), starting from PhCCl3 and 3,5-dimethylpyrazole (PzMe2) or pyrazole (Pz) was performed. The sterically crowded C6H5C(PzMe2)3 is thermally transformed into the bis(pyrazolyl)(p-pyrazolyl)phenylmethane ligand PzMe2-C6H4CH(PzMe2)2. In this compound both PzMe2 rings are linked through the N-atom to the methine C-atom. At higher temperatures, the binding mode of PzMe2 changes from N1 to C4. All transformations occurred via quinonoid carbocation intermediates that undergo an aromatic electrophilic substitution on the 4-position of PzMe2. Reaction conditions were established to obtain five tris(pyrazolyl)phenylmethane ligands in moderate to good yields. ¹H- and 13C-NMR spectroscopy and X-ray diffraction of single crystals support the proposed structures.


Asunto(s)
Alcanos/síntesis química , Metano/química , Pirazoles/síntesis química , Técnicas de Química Sintética , Calor , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/química , Pirazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA