RESUMEN
Piscirickettsiosis, the main infectious disease affecting salmon farming in Chile, still has no efficient control measures. Piscirickettsia salmonis is a facultative intracellular bacterium that can survive and replicate within the host macrophages, evading the immune response. Triterpenic saponins obtained from the Quillaja saponaria tree have been widely studied, and have been shown to be immunomodulatory agents, suitable for feed and vaccine applications for veterinary and human uses. The impact of the oral administration of two extracts of Quillaja saponins on the infection of P. salmonis in Salmo salar and the corresponding gene expressions of immunomarkers were studied under three in vivo models. In the intraperitoneal challenge model, the group fed with Quillaja extracts showed lower mortality (29.1% treated vs. 37.5% control). Similar results were obtained in the cohabitation model trial (36.3% vs. 60.0%). In the commercial pilot trial, the results showed a significant reduction of 71.3% in mortality caused by P. salmonis (0.51% vs. 1.78%) and antibiotic use (reduction of 66.6% compared to untreated control). Also, Quillaja extracts significantly modulated the expression of IFN-II and CD8. These results represent evidence supporting the future use of purified Quillaja extracts as a natural non-pharmacological strategy for the prevention and control of P. salmonis infections in salmon.
RESUMEN
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
RESUMEN
Interferons (IFNs) are cytokines involved in the immune response that act on innate and adaptive immunity. These proteins are natural cell-signaling glycoproteins expressed in response to viral infections, tumors, and biological inducers and constitute the first line of defense of vertebrates against infectious agents. They have been marketed for more than 30 years with considerable impact on the global therapeutic protein market thanks to their diversity in terms of biological activities. They have been used as single agents or with combination treatment regimens, demonstrating promising clinical results, resulting in 22 different formulations approved by regulatory agencies. The 163 clinical trials with currently active IFNs reinforce their importance as therapeutics for human health. However, their application has presented difficulties due to the molecules' size, sensitivity to degradation, and rapid elimination from the bloodstream. For some years now, work has been underway to obtain new drug delivery systems to provide adequate therapeutic concentrations for these cytokines, decrease their toxicity and prolong their half-life in the circulation. Although different research groups have presented various formulations that encapsulate IFNs, to date, there is no formulation approved for use in humans. The current review exhibits an updated summary of all encapsulation forms presented in the scientific literature for IFN-α, IFN-ß, and IFN-γ, from the year 1996 to the year 2021, considering parameters such as: encapsulating matrix, route of administration, target, advantages, and disadvantages of each formulation.
RESUMEN
The cytotoxic mechanism of the saponin QS-21 and its aglycone quillaic acid (QA) was studied on human gastric cancer cells (SNU1 and KATO III). Both compounds showed in vitro cytotoxic activity with IC50 values: 7.1 µM (QS-21) and 13.6 µM (QA) on SNU1 cells; 7.4 µM (QS-21) and 67 µM (QA) on KATO III cells. QS-21 and QA induce apoptosis on SNU1 and KATO III, as demonstrated by TUNEL, Annexin-V and Caspase Assays. Additionally, we performed in silico docking studies simulating the binding of both triterpenic compounds to key proteins involved in apoptotic pathways. The binding energies (∆Gbin) thus calculated, suggest that the pro-apoptotic protein Bid might be a plausible target involved in the apoptotic effect of both triterpenic compounds. Although QA shows some antiproliferative effects on SNU1 cells cultured in vitro, our results suggest that QS-21 is a more powerful antitumor agent, which merits further investigation regarding their properties as potential therapeutic agents for gastric cancer.
Asunto(s)
Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Quillaja , Saponinas/química , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Saponinas/farmacología , Saponinas/uso terapéuticoRESUMEN
The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications.
Asunto(s)
Acidithiobacillus thiooxidans/crecimiento & desarrollo , Acidithiobacillus thiooxidans/metabolismo , Crecimiento Quimioautotrófico , Compuestos de Azufre/metabolismo , Biomasa , Modelos Biológicos , Modelos Teóricos , Oxidación-ReducciónRESUMEN
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on a Corynebacterium glutamicum strain expressing the Escherichia coli enzyme UDP-glucose pyrophosphorylase (GalU). Biochemical network analysis suggest a further bottleneck for trehalose synthesis resulting from the coupling of phosphotransferase (PTS) mediated glucose uptake, and glucose catabolism in C. glutamicum. To overcome this coupling, we propose the expression of E. coli phosphoenolpyruvate synthetase (PpsA), in addition to GalU expression, in C. glutamicum. Although GalU expression improved trehalose synthesis in C. glutamicum, the simultaneous expression of GalU and PpsA did not result in a further increase in trehalose yield, but resulted in an increased catabolic rate of glucose, which could be ascribed to the operation of a futile cycle between phosphoenolpyruvate and pyruvate. The impact of GalU and PpsA expression on polysaccharide content, side product excretion and metabolic fluxes is discussed, as well as alternative ways to decouple glucose uptake and catabolism, in order to increase trehalose yield.
Asunto(s)
Corynebacterium glutamicum/metabolismo , Proteínas de Escherichia coli/biosíntesis , Expresión Génica/genética , Piruvato-Sintasa/biosíntesis , Trehalosa/biosíntesis , UTP-Glucosa-1-Fosfato Uridililtransferasa/biosíntesis , Corynebacterium glutamicum/genética , Proteínas de Escherichia coli/genética , Ingeniería Genética/métodos , Piruvato-Sintasa/genética , Trehalosa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/genéticaRESUMEN
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway.
Asunto(s)
Corynebacterium/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Glucógeno/biosíntesis , Trehalosa/biosíntesis , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Corynebacterium/genética , Proteínas de Escherichia coli/fisiología , Glucosiltransferasas/fisiología , Operón , Monoéster Fosfórico Hidrolasas/fisiología , UTP-Glucosa-1-Fosfato Uridililtransferasa/fisiología , Uridina Difosfato Glucosa/metabolismoRESUMEN
Trehalose is a disaccharide with potential applications in the biotechnology and food industries. We propose a method for industrial production of trehalose, based on improved strains of Corynebacterium glutamicum. This paper describes the heterologous expression of Escherichia coli trehalose-synthesizing enzymes trehalose-6-phosphate synthase (OtsA) and trehalose-6-phosphate phosphatase (OtsB) in C. glutamicum, as well as its impact on the trehalose biosynthetic rate and metabolic-flux distributions, during growth in a defined culture medium. The new recombinant strain showed a five- to sixfold increase in the activity of OtsAB pathway enzymes, compared to a control strain, as well as an almost fourfold increase in the trehalose excretion rate during the exponential growth phase and a twofold increase in the final titer of trehalose. The heterologous expression described resulted in a reduced specific glucose uptake rate and Krebs cycle flux, as well as reduced pentose pathway flux, a consequence of downregulated glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The results proved the suitability of using the heterologous expression of Ots proteins in C. glutamicum to increase the trehalose biosynthetic rate and yield and suggest critical points for further improvement of trehalose overproduction in C. glutamicum.