Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(28): 24290-24297, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28656765

RESUMEN

Density functional theory (DFT) calculations were performed to examine exothermic surface chemistry between alumina and four fluorinated, fragmented molecules representing species from decomposing fluoropolymers: F-, HF, CH3F, and CF4. The analysis has strong implications for the reactivity of aluminum (Al) particles passivated by an alumina shell. It was hypothesized that the alumina surface structure could be transformed due to hydrogen bonding effects from the environment that promote surface reactions with fluorinated species. In this study, the alumina surface was analyzed using model clusters as isolated systems embedded in a polar environment (i.e., acetone). The conductor-like screening model (COSMO) was used to mimic environmental effects on the alumina surface. Four defect models for specific active -OH sites were investigated including two terminal hydroxyl groups and two hydroxyl bridge groups. Reactions involving terminal bonds produce more energy than bridge bonds. Also, surface exothermic reactions between terminal -OH bonds and fluorinated species produce energy in decreasing order with the following reactant species: CF4 > HF > CH3F. Additionally, experiments were performed on aluminum powders using thermal equilibrium analysis techniques that complement the calculations. Consistently, the experimental results show a linear relationship between surface exothermic reactions and the main fluorination reaction for Al powders. These results connect molecular level reaction kinetics to macroscopic measurements of surface energy and show that optimizing energy available in surface reactions linearly correlates to maximizing energy in the main reaction.

2.
ACS Appl Mater Interfaces ; 8(22): 13926-33, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27175545

RESUMEN

Density functional theory (DFT) calculations were performed to understand molecular variations on an alumina surface due to exposure to a polar environment. The analysis has strong implications for the reactivity of aluminum (Al) particles passivated by an alumina shell. Recent studies have shown a link between the carrier fluid used for Al powder intermixing and the reactivity of Al with fluorine containing reactive mixtures. Specifically, flame speeds show a threefold increase when polar liquids are used to intermix aluminum and fluoropolymer powder mixtures. It was hypothesized that the alumina lattice structure could be transformed due to hydrogen bonding forces exerted by the environment that induce modified bond distances and charges and influence reactivity. In this study, the alumina surface was analyzed using DFT calculations and model clusters as isolated systems embedded in polar environments (acetone and water). The conductor-like screening model (COSMO) was used to mimic environmental effects on the alumina surface. Five defect models for specific active -OH sites were investigated in terms of structures and vibrational -OH stretching frequencies. The observed changes of the surface OH sites invoked by the polar environment were compared to the bare surface. The calculations revealed a strong connection between the impact of carrier fluid polarity on the hydrogen bonding forces between the surface OH sites and surrounding species. Changes were observed in the OH characteristic properties such as OH distances (increase), atomic charges (increase), and OH stretching frequencies (decrease); these consequently improve OH surface reactivity. The difference between medium (acetone) and strong (water) polar environments was minimal in the COSMO approximation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA