Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(48): 28100-28114, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33289732

RESUMEN

This work for the first time evaluates the ability of homogeneous, stable, and pure zinc oxide nanoparticles (ZnONPs-GS) synthesized by "green chemistry" - an environmentally friendly, cheap, and easy method that allows efficient use of plant waste, such as banana peels, for the selective detection of four neurotransmitters present in body fluids and promotion of the SERS effect. Selective adsorption on ZnONPs-GS was compared with adsorption on the surface of (1) ZnONPs, which were obtained by electrochemical dissolution of zinc in a solution free of surfactants and (2) mechanically polished surface of bare Zn. The study showed that SERS spectroscopy using unique marker bands allows distinguishing whether the adsorbate is deposited on the surface of zinc or zinc oxide. Thus, the combination of the SERS technique with an optical probe can allow an in vivo determination of the condition of galvanized implants. The use of SERS has been extended to monitor the photocatalytic properties of surface-functionalized ZnO nanoparticles. It has been shown that despite the same structure, purity, and adsorption properties, ZnONPs-GS obtained using "green chemistry" are more bio-friendly for biological material than those obtained by the electrochemical method. This is because the surface of ZnONPs-GS is free of hydroxyl groups, which can easily form reactive oxygen species when the surface is exposed to visible radiation. Thus, surface-functionalized ZnONPS-GS can protect the biological material from the damage caused by the production and attack of an excess of ROS. Also, for an exemplary neurotransmitter, structural changes when it is not-covalently bound to Zn/ZnO were compared with the structural changes of this neurotransmitter deposited on the surface of various metals (Cu, α-Ti, and α-Fe) and metal oxides (leaf-like CuO, rutile-TiO2, and γ-Fe2O3). It has been shown that adsorption only slightly depends on the type of metallic surface and the development of this surface for roughness up to 1 micron. Metal substrates were characterized before and after the neurotransmitters' adsorption. UV-Vis, Raman, and ATR-FTIR confirmed the formation of ZnO nanoparticles. XRD showed a high crystalline structure of wurtzite. TEM and DLS showed that nanoparticles are spherical, well dispersed, and have a uniform size.


Asunto(s)
Nanopartículas del Metal/química , Neurotransmisores/análisis , Óxido de Zinc/química , Zinc/química , Adsorción , Técnicas Electroquímicas , Frutas/química , Tecnología Química Verde/métodos , Musa/química , Neurotransmisores/química , Extractos Vegetales/química , Espectrometría Raman/métodos
2.
Polymers (Basel) ; 11(9)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546883

RESUMEN

The influence of the pyrolysis temperature on the structural, textural, and electrochemical properties of carbon aerogels obtained from potato, maize, and rice starches was analyzed. The carbonization of organic precursors, followed by gelatinization, exchange of solvent, and drying process, was carried out in an argon atmosphere at temperatures ranging from 600 °C to 1600 °C. The nanostructured carbons were characterized by X-ray powder diffraction (XRD) as well as N2-adsorption/desorption (N2-BET) methods. The electrochemical behavior of Li-ion cells based on the fabricated carbon anodes was investigated using the galvanostatic charge/discharge tests (GCDT) and electrochemical impedance spectroscopy (EIS). The results show that the thermal treatment stage has a crucial impact on the proper formation of the aerogel material's porous structures and also on their working parameters as anode materials. The highest relative development of the external surface was obtained for the samples pyrolysed at 700 °C, which exhibited the best electrochemical characteristics (the highest specific capacities as well as the lowest charge transfer resistances).

3.
Artículo en Inglés | MEDLINE | ID: mdl-30825867

RESUMEN

The process of catalytic destruction of tumor cells can be strengthened by introducing copper(II) oxide nanostructures (CuONSs) with receptor's agonists/antagonists immobilized on their surface. Here we show a simple and reliable electrochemical method for the fabrication ions-free flake-like CuO nanostructures in a surfactant/ions free aqueous environment. For the determination of the metal surface plasmon, size, rheology, and structure of the fabricated nanostructures ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), Raman, and X-ray photoelectron (XPS) spectroscopies as well as scanning electron microscope (SEM), high-resolution transmission electron microscopy with energy dispersive X-ray (HDTEM-EDS), X-ray powder diffraction (XRD), and dynamic light scattering (DLS) analysis were used. The fabricated nanostructures were used as highly sensitive, uniform, and reproducible sensors of a natural ligand (bombesin) of some types of metabotropic seven transmembrane G protein-coupled superfamily receptors (GPCRs), which are over-express on the surface of many malignant tumors. Surface-enhanced Raman scattering (SERS) was used to monitor the geometry of adsorbate, separate, enrich, and detect various bombesin C-terminal fragments. It has been shown that the type of used substrate, surface development, and ions present in the solution have little effect on the mode of adsorption.


Asunto(s)
Cobre/química , Nanoestructuras/química , Neurotransmisores/análisis , Espectrometría Raman/métodos , Bombesina/análisis , Reproducibilidad de los Resultados , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA