Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Mater Sci Eng C Mater Biol Appl ; 121: 111862, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579511

RESUMEN

Liver transplantation from compatible donors has been the main therapy available for patients with irreversible hepatic injuries. Due to the increasing shortage of organs suitable for transplantation, tissue engineering technologies are important alternatives or surrogate approaches for the future of human organ transplantations. New bioengineering tools have been designed to produce decellularized organs (i.e. scaffolds) which could be recellularized with human cells. Specifically, there is an unmet need for developing reproducible protocols for inducing better cellular spreading in decellularized liver scaffolds. The aim of the present work was to investigate the possibility to improve liver scaffold recellularization by pre-coating decellularized tissue scaffolds with HepG2-conditioned medium (CM). Furthermore, we evaluated the capability of commercial human liver cells (HepG2) to adhere to several types of extracellular matrices (ECM) as well as CM components. Wistar rat livers were decellularized and analyzed by histology, scanning electron microscopy (SEM), immunohistochemistry and residual DNA-content analysis. Human induced pluripotent stem cells (hiPSCs)-derived mesenchymal cells (hiMSCs), and human commercial hepatic (HepG2) and endothelial (HAEC) cells were used for liver scaffold recellularization with or without CM pre-coating. Recellularization occurred for up to 5 weeks. Hepatic tissues and CM were analyzed by proteomic assays. We show that integrity and anatomical organization of the hepatic ECM were maintained after decellularization, and proteomic analysis suggested that pre-coating with CM enriched the decellularized liver ECM. Pre-coating with HepG2-CM highly improved liver recellularization and revealed the positive effects of liver ECM and CM components association.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteómica , Animales , Medios de Cultivo Condicionados/farmacología , Matriz Extracelular , Humanos , Hígado , Ratas , Ratas Wistar , Ingeniería de Tejidos , Andamios del Tejido
3.
Biofabrication ; 12(1): 015010, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31577996

RESUMEN

The liver is responsible for many metabolic, endocrine and exocrine functions. Approximately 2 million deaths per year are associated with liver failure. Modern 3D bioprinting technologies allied with autologous induced pluripotent stem cells (iPS)-derived grafts could represent a relevant tissue engineering approach to treat end stage liver disease patients. However, protocols that accurately recapitulates liver's epithelial parenchyma through bioprinting are still underdeveloped. Here we evaluated the impacts of using single cell dispersion (i.e. obtained from conventional bidimensional differentiation) of iPS-derived parenchymal (i.e. hepatocyte-like cells) versus using iPS-derived hepatocyte-like cells spheroids (i.e. three-dimensional cell culture), both in combination with non-parenchymal cells (e.g. mesenchymal and endothelial cells), into final liver tissue functionality. Single cell constructs showed reduced cell survival and hepatic function and unbalanced protein/amino acid metabolism when compared to spheroid printed constructs after 18 days in culture. In addition, single cell printed constructs revealed epithelial-mesenchymal transition, resulting in rapid loss of hepatocyte phenotype. These results indicates the advantage of using spheroid-based bioprinting, contributing to improve current liver bioprinting technology towards future regenerative medicine applications and liver physiology and disease modeling.


Asunto(s)
Bioimpresión , Células Madre Pluripotentes Inducidas/citología , Hígado/citología , Esferoides Celulares/citología , Bioimpresión/instrumentación , Bioimpresión/métodos , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hígado/metabolismo , Masculino , Impresión Tridimensional , Esferoides Celulares/metabolismo , Ingeniería de Tejidos
4.
Stem Cell Res Ther ; 10(1): 258, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416480

RESUMEN

BACKGROUND: Liver organoid technology holds great promises to be used in large-scale population-based drug screening and in future regenerative medicine strategies. Recently, some studies reported robust protocols for generating isogenic liver organoids using liver parenchymal and non-parenchymal cells derived from induced pluripotent stem cells (iPS) or using isogenic adult primary non-parenchymal cells. However, the use of whole iPS-derived cells could represent great challenges for a translational perspective. METHODS: Here, we evaluated the influence of isogenic versus heterogenic non-parenchymal cells, using iPS-derived or adult primary cell lines, in the liver organoid development. We tested four groups comprised of all different combinations of non-parenchymal cells for the liver functionality in vitro. Gene expression and protein secretion of important hepatic function markers were evaluated. Additionally, liver development-associated signaling pathways were tested. Finally, organoid label-free proteomic analysis and non-parenchymal cell secretome were performed in all groups at day 12. RESULTS: We show that liver organoids generated using primary mesenchymal stromal cells and iPS-derived endothelial cells expressed and produced significantly more albumin and showed increased expression of CYP1A1, CYP1A2, and TDO2 while presented reduced TGF-ß and Wnt signaling activity. Proteomics analysis revealed that major shifts in protein expression induced by this specific combination of non-parenchymal cells are related to integrin profile and TGF-ß/Wnt signaling activity. CONCLUSION: Aiming the translation of this technology bench-to-bedside, this work highlights the role of important developmental pathways that are modulated by non-parenchymal cells enhancing the liver organoid maturation.


Asunto(s)
Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Hígado/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Adulto , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Humanos , Hígado/metabolismo , Masculino , Organoides/metabolismo , Tejido Parenquimatoso/crecimiento & desarrollo , Tejido Parenquimatoso/metabolismo , Proteoma/análisis , Adulto Joven
5.
Int J Nanomedicine ; 12: 8471-8482, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29200855

RESUMEN

The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV) and N-V-N color centers and sizes (100-10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding of F-NDPNV-Bit to activated platelets within the blood clot. We posit that F-NDPNV-Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device.


Asunto(s)
Bioingeniería/métodos , Diagnóstico por Imagen , Desintegrinas/química , Rayos Infrarrojos , Nanodiamantes/química , Péptidos/química , Trombosis/diagnóstico , Animales , Arterias Carótidas/patología , Modelos Animales de Enfermedad , Desintegrinas/administración & dosificación , Fluorescencia , Humanos , Infusiones Intravenosas , Masculino , Péptidos/administración & dosificación , Ratas Sprague-Dawley , Venenos de Serpiente , Porcinos
6.
Life Sci ; 74(26): 3211-22, 2004 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-15094322

RESUMEN

The mechanisms underlying the onset of obesity are complex and not completely understood. An imbalance of autonomic nervous system has been proposed to be a major cause of great fat deposits accumulation in hypothalamic obesity models. In this work we therefore investigated the adrenal chromaffin cells in monosodium glutamate (MSG)-treated obese female mice. Newborn mice were injected daily with MSG (4 mg/g body weight) or saline (controls) during the first five days of life and studied at 90 days of age. The adrenal catecholamine content was 56.0% lower in the obese group when compared to lean controls (P < 0.0001). Using isolated adrenal medulla we observed no difference in basal catecholamine secretion percentile between obese and lean animals. However, the percentile of catecholamine secretion stimulated by high K+ concentration was lower in the obese group. There was a decrease in the tyrosine hydroxylase enzyme expression (57.3%, P < 0.004) in adrenal glands of obese mice. Interestingly, the expression of dopamine beta-hydroxylase was also reduced (47.0%, P < 0.005). Phenylethanolamine N-methyltransferase expression was not affected. Our results show that in the MSG model, obesity status is associated with a defective adrenal chromaffin cell function. We conclude that in MSG obesity the low total catecholamine content is directly related to a decrease of key catecholamine-synthesizing enzymes, which by its turn may lead to a defective catecholamine secretion.


Asunto(s)
Médula Suprarrenal/fisiopatología , Catecolaminas/metabolismo , Enfermedades Hipotalámicas/complicaciones , Oxigenasas de Función Mixta/biosíntesis , Obesidad/fisiopatología , Feniletanolamina N-Metiltransferasa/biosíntesis , Médula Suprarrenal/enzimología , Médula Suprarrenal/metabolismo , Animales , Modelos Animales de Enfermedad , Dopamina beta-Hidroxilasa/biosíntesis , Femenino , Enfermedades Hipotalámicas/inducido químicamente , Ratones , Obesidad/enzimología , Obesidad/etiología , Obesidad/metabolismo , Glutamato de Sodio/toxicidad , Tirosina 3-Monooxigenasa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA