Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Prot ; 87(3): 100239, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38325555

RESUMEN

Retail stores maintain fresh rice noodles (FRNs) at room temperature because refrigeration negatively impacts FRNs' texture. The room temperature and high water activity of FRNs help spore-forming Bacillus cereus to grow and produce toxins. In this study, the effect of steam cooking on survival and different storage temperatures on the growth and enterotoxins production of B. cereus in FRNs were investigated. White rice flour was used to make FRNs. Three treatments of FRNs were used in this study; uninoculated, inoculated (with 4.0 log CFU/ml of B. cereus spores), and autoclaved as a negative control. A slurry of rice flour, cornstarch, and water was steam cooked for 4 min at 90°C and incubated for 168 h at 4°C, and for 72 h at 22 and 32°C. Incubated FRNs were tested for pH, B. cereus growth, and enterotoxins production. Steam cooking reduced the total number of B. cereus spores by 0.7 ± 0.3 log CFU/g. Surviving B. cereus spores in inoculated and uninoculated FRNs germinated over 72 h of storage. No B. cereus was detected in negative controls. An interaction was observed across storage temperatures and time (p < 0.05). The B. cereus population in uninoculated FRNs increased by more than 7.0 log CFU/g at 22 and 32°C over 72 h, while inoculated FRNs showed a 5.0 log bacterial increase at these storage temperatures. No growth was observed at 4°C in both inoculated and uninoculated FRNs. The pH of inoculated FRNs was reduced from 6.9 ± 0.1 to 5.7 ± 0.0 at 32°C and to 6.2 ± 0.1 at 22°C, and the pH of uninoculated FRNs was reduced from 7.0 ± 0.1 to 5.8 ± 0.2 at 32°C and to 6.5 ± 0.0 at 22°C, indicative of FRNs spoilage. B. cereus in inoculated FRNs produced enterotoxins after 12 h of storage at 32°C, and over 24 h of storage at 22°C, while no toxin was detected at 4°C. Our findings show that storing FRNs at room temperature for 24 h leads to enterotoxin production, emphasizing the importance of proper FRN storage and their potential risk to consumers. Nevertheless, further research should investigate the effect of other foodborne pathogens on these products.


Asunto(s)
Contaminación de Alimentos , Oryza , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Bacillus cereus , Oryza/microbiología , Vapor , Recuento de Colonia Microbiana , Esporas Bacterianas , Culinaria , Temperatura , Enterotoxinas
2.
Front Microbiol ; 14: 1231726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045028

RESUMEN

Characterization of the microbiomes of pre-launch spacecraft in spacecraft assembly facilities is an important step in keeping crews healthy during journeys that can last several hundred days in small artificial environments in space. Bacillus cereus, a foodborne pathogenic bacterium, has the potential to be a significant source of food contamination in such environments. This bacterium is a spore-forming bacteria that resists different antimicrobial treatments in cleanrooms where spacecraft are assembled. This study evaluated 41 B. cereus isolates from four pre-launch spacecraft in spacecraft assembly facilities for their toxin gene profile and antibiotic resistance. Four enterotoxin genes (hlbC, cytK, nheA, and entFM) and two emetic toxin genes (ces and CER) were targeted for chromosomal DNA and plasmid DNA. Results showed 31.7, 7.3, 85, and 41.5% of isolates contained hblC, cytK, nheA, and entFM, respectively, in chromosomal or plasmid DNA. Overall, 37 isolates (90.2%) showed at least one enterotoxin gene. The emetic toxin gene, ces, was detected in the plasmid DNA of three isolates (7.3%). The antibiotic resistance of isolates was evaluated by the Kirby-Bauer disk diffusion procedure. All the isolates exhibited 100% susceptibility to gentamicin, 97% were susceptible to clindamycin, and 95% to chloramphenicol, imipenem, tetracycline, and vancomycin. The overall susceptibility average is 51%. However, 98% of the isolates were resistant to ß-lactam antibiotics, 97.5% were resistant to sulfamethoxazole/trimethoprim, and 80% were resistant to rifampin. This study provides important information on B. cereus isolates from spacecraft assembly facilities for use in microbial monitoring programs of spacecraft.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA