Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 26(7): 1832-1847, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28206693

RESUMEN

Plasmids are nucleic acid molecules that can drive their own replication in a living cell. They can be transmitted horizontally and can thrive in the host cell to high-copy numbers. Plasmid replication and gene expression consume cellular resources and cells carrying plasmids incur fitness costs. But many plasmids carry genes that can be beneficial under certain conditions, allowing the cell to endure in the presence of antibiotics, toxins, competitors or parasites. Horizontal transfer of plasmid-encoded genes can thus instantaneously confer differential adaptation to local or transient selection conditions. This conflict between cellular fitness and plasmid spread sets the scene for multilevel selection processes. We have engineered a system to study the short-term evolutionary impact of different synonymous versions of a plasmid-encoded antibiotic resistance gene. Applying experimental evolution under different selection conditions and deep sequencing allowed us to show rapid local adaptation to the presence of antibiotic and to the specific version of the resistance gene transferred. We describe the presence of clonal interference at two different levels: at the within-cell level, because a single cell can carry several plasmids, and at the between-cell level, because a bacterial population may contain several clones carrying different plasmids and displaying different fitness in the presence/absence of antibiotic. Understanding the within-cell and between-cell dynamics of plasmids after horizontal gene transfer is essential to unravel the dense network of mobile elements underlying the worldwide threat to public health of antibiotic resistance.


Asunto(s)
Escherichia coli/genética , Evolución Molecular , Transferencia de Gen Horizontal , Plásmidos/genética , Adaptación Fisiológica , Antibacterianos/farmacología , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
2.
Environ Microbiol ; 6(7): 655-68, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15186344

RESUMEN

Ralstonia eutropha JMP134 (pJP4) is a useful model for the study of bacterial degradation of substituted aromatic pollutants. Several key degrading capabilities, encoded by tfd genes, are located in the 88 kb, self-transmissible, IncP-1 beta plasmid pJP4. The complete sequence of the 87,688 nucleotides of pJP4, encoding 83 open reading frames (ORFs), is reported. Most of the coding sequence corresponds to a well-conserved IncP-1 beta backbone and the previously reported tfd genes. In addition, we found hypothetical proteins putatively involved in the transport of aromatic compounds and short-chain fatty acid oxidation. ORFs related to mobile elements, including the Tn501-encoded mercury resistance determinants, an IS1071-based composite transposon and a cryptic class II transposon, are also present in pJP4. These mobile elements are inefficient in transposition and are located in two regions of pJP4 that are rich in remnants of lateral gene transfer events. pJP4 plasmid was able to capture chromosomal genes and form hybrid plasmids with the IncP-1 alpha plasmid RP4. These observations are integrated into a model for the evolution of pJP4, which reveals mechanisms of bacterial adaptation to degrade pollutants.


Asunto(s)
Adaptación Fisiológica , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Contaminantes Ambientales/metabolismo , Hidrocarburos Aromáticos/metabolismo , Plásmidos/genética , Composición de Base , Biodegradación Ambiental , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Orden Génico , Transferencia de Gen Horizontal , Genes Bacterianos , Compuestos de Mercurio/toxicidad , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Operón , Recombinación Genética , Análisis de Secuencia de ADN , Transcripción Genética
3.
J Bacteriol ; 185(5): 1534-42, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12591870

RESUMEN

Ralstonia eutropha JMP134(pJP4) degrades 3-chlorobenzoate (3-CB) by using two not completely isofunctional, pJP4-encoded chlorocatechol degradation gene clusters, tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II). Introduction of several copies of each gene cluster into R. eutropha JMP222, which lacks pJP4 and thus accumulates chlorocatechols from 3-CB, allows the derivatives to grow in this substrate. However, JMP222 derivatives containing one chromosomal copy of each cluster did not grow in 3-CB. The failure to grow in 3-CB was the result of accumulation of chlorocatechols due to the limiting activity of chlorocatechol 1,2-dioxygenase (TfdC), the first enzyme in the chlorocatechol degradation pathway. Micromolar concentrations of 3- and 4-chlorocatechol inhibited the growth of strains JMP134 and JMP222 in benzoate, and cells of strain JMP222 exposed to 3 mM 3-CB exhibited a 2-order-of-magnitude decrease in viability. This toxicity effect was not observed with strain JMP222 harboring multiple copies of the tfdC(I) gene, and the derivative of strain JMP222 containing tfdC(I)D(I)E(I)F(I) plus multiple copies of the tfdC(I) gene could efficiently grow in 3-CB. In addition, tfdC(I) and tfdC(II) gene mutants of strain JMP134 exhibited no growth and impaired growth in 3-CB, respectively. The introduction into strain JMP134 of the xylS-xylXYZL genes, encoding a broad-substrate-range benzoate 1,2-dioxygenase system and thus increasing the transformation of 3-CB into chlorocatechols, resulted in derivatives that exhibited a sharp decrease in the ability to grow in 3-CB. These observations indicate that the dosage of chlorocatechol-transforming genes is critical for growth in 3-CB. This effect depends on a delicate balance between chlorocatechol-producing and chlorocatechol-consuming reactions.


Asunto(s)
Catecoles/metabolismo , Clorobenzoatos/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Dioxigenasas , Endo-1,4-beta Xilanasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas Bacterianas , Secuencia de Bases , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , División Celular/genética , Cupriavidus necator/crecimiento & desarrollo , Proteínas de Unión al ADN , Dosificación de Gen , Datos de Secuencia Molecular , Familia de Multigenes , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Xilosidasas/genética , Xilosidasas/metabolismo
4.
Appl Environ Microbiol ; 66(4): 1602-8, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10742248

RESUMEN

The enzymes chlorocatechol-1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase allow Ralstonia eutropha JMP134(pJP4) to degrade chlorocatechols formed during growth in 2,4-dichlorophenoxyacetate or 3-chlorobenzoate (3-CB). There are two gene modules located in plasmid pJP4, tfdC(I)D(I)E(I)F(I) (module I) and tfdD(II)C(II)E(II)F(II) (module II), putatively encoding these enzymes. To assess the role of both tfd modules in the degradation of chloroaromatics, each module was cloned into the medium-copy-number plasmid vector pBBR1MCS-2 under the control of the tfdR regulatory gene. These constructs were introduced into R. eutropha JMP222 (a JMP134 derivative lacking pJP4) and Pseudomonas putida KT2442, two strains able to transform 3-CB into chlorocatechols. Specific activities in cell extracts of chlorocatechol-1,2-dioxygenase (tfdC), chloromuconate cycloisomerase (tfdD), and dienelactone hydrolase (tfdE) were 2 to 50 times higher for microorganisms containing module I compared to those containing module II. In contrast, a significantly (50-fold) higher activity of maleylacetate reductase (tfdF) was observed in cell extracts of microorganisms containing module II compared to module I. The R. eutropha JMP222 derivative containing tfdR-tfdC(I)D(I)E(I)F(I) grew four times faster in liquid cultures with 3-CB as a sole carbon and energy source than in cultures containing tfdR-tfdD(II)C(II)E(II)F(II). In the case of P. putida KT2442, only the derivative containing module I was able to grow in liquid cultures of 3-CB. These results indicate that efficient degradation of 3-CB by R. eutropha JMP134(pJP4) requires the two tfd modules such that TfdCDE is likely supplied primarily by module I, while TfdF is likely supplied by module II.


Asunto(s)
Clorobenzoatos/metabolismo , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Genes Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Medios de Cultivo , Cupriavidus necator/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA