RESUMEN
SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.
Asunto(s)
COVID-19 , Esfingomielinas , Humanos , Pronóstico , SARS-CoV-2/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo , BiomarcadoresRESUMEN
BACKGROUND: Sex-determined differences are rarely addressed in the management of diseases, despite well-known contrasting outcomes between female and male patients. In COVID-19 there is a remarkable disparity, with higher rates of mortality and more severe acute disease in men compared to women, who are mostly affected by long COVID-19. Furthermore, whether androgens play a protective or detrimental role in COVID-19 is still a matter of debate. Hence, the adequate management of the disease, especially regarding men presenting acute disease aggravation, still needs important data to elucidate the interplay between sex hormones and host immune responses that drive the worse evolution in male patients. METHODS: A cohort of 92 controls and 198 non-severe and severe COVID-19 patients, from both sexes, was assessed for clinical outcomes, plasma steroids, gonadotropins, sex hormone binding globulin (SHBG) and immune mediators, before vaccination. These data were correlated with the global gene expression of blood leukocytes. The androgen receptor (AR) signaling pathway was investigated by transcriptomics and tracheal aspirate was obtained from severe patients for SARS-COV-2 quantification in the respiratory tract. The interplay among clinical, endocrine and immunological data deciphered the sex differences in COVID-19. Importantly, statistical analyses, using 95% confidence interval, considered confounding factors such as age and comorbidities, to definitely parse the role of androgens in the disease outcome. RESULTS: There were notable contrasting levels of testosterone and dihydrotestosterone (DHT) throughout the disease course in male but not female patients. Inflammatory mediators presented significant negative correlations with testosterone, which was partially dependent on age and diabetes in men. Male subjects with severe COVID-19 had a significant up regulation of the AR signaling pathway, including modulation of TMPRSS2 and SRD5A1 genes, which are related to the viral infection and DHT production. Indeed, men had a higher viral load in the tracheal aspirate and levels of DHT were associated with increased relative risk of death. In contrast, the testosterone hormone, which was notably reduced in severe disease, was significantly related with susceptibility to COVID-19 worsening in male patients. Secondary hypogonadism was ruled out in the male severe COVID-19 subjects, as FSH, LH, and SHBG levels were not significantly altered. Instead, these subjects tended to have increased gonadotropin levels. Most interestingly, in this study we identified, for the first time, combined sets of clinical and immunoendocrine parameters that together predicted progression from non-severe to severe COVID-19 in men. One of the limitations of our study was the low or undetectable levels of DHT in many patients. Then, the evaluation of enzymes related to biosynthesis and signaling by androgens was mandatory and reiterated our findings. CONCLUSIONS: These original results unraveled the disease immunoendocrine regulation, despite vaccination or comorbidities and pointed to the fundamental divergent role of the androgens testosterone and DHT in the determination of COVID-19 outcomes in men. Therefore, sex-specific management of the dysregulated responses, treatments or public health measures should be considered for the control of COVID-19 pandemic.
RESUMEN
COVID-19 has a broad spectrum of clinical manifestations associated with the host immune response heterogeneity. Despite the advances in COVID-19 research, it is still crucial to seek a panel of molecular markers that enable accurate stratification of COVID-19 patients. Here, we performed a study that combined analysis of blood transcriptome, demographic data, clinical aspects and laboratory findings from 66 participants classified into different degrees of COVID-19 severity and healthy subjects. We identified a perturbation in blood-leukocyte transcriptional profile associated with COVID-19 aggravation, which was mainly related to processes that disfavoured lymphocyte activation and favoured neutrophil activation. This transcriptional profile stratified patients according to COVID-19 severity. Hence, it enabled identification of a turning point in transcriptional dynamics that distinguished disease outcomes and non-hospitalized from hospitalized moderate patients. Central genes of this unique neutrophil signature were S100A9, ANXA3, CEACAM6, VNN1, OLFM4, IL1R2, TCN1 and CD177. Our study indicates the molecular changes that are linked with the differing clinical aspects presented by humans when suffering from COVID-19, which involve neutrophil activation.
Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Neutrófilos , Transcriptoma , BiomarcadoresRESUMEN
COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.
Asunto(s)
COVID-19 , Factor de Activación Plaquetaria , Humanos , Estudios Transversales , Endocannabinoides , Glucocorticoides/uso terapéuticoRESUMEN
The transient receptor potential vanilloid type-1 (TRPV1) channels have been implicated in the modulation of aversive responses. The endocannabinoid anandamide acts as an endogenous TRPV1 agonist, exerting opposite functions at TRPV1 and type-1 cannabinoid receptors (CB1R). Here we tested the hypothesis that hippocampal TRPV1 modulates contextual fear memory retrieval and investigated the influence of the aversive stimulus intensity as well as the role of endocannabinoid signaling. Male C57BL/6J mice were tested for contextual fear memory after low-, moderate-, or high-intensity shock protocols. The selective TRPV1 blockers SB366791 (1-10 nmol) and 6-I-NC (2 nmol) were infused via intra-dorsal hippocampus before the retrieval test session. The local levels of endocannabinoids and Arc and Zif268 mRNAs, involved in synaptic plasticity and memory, were quantified. First, both TRPV1 blockers reduced memory retrieval in animals exposed to moderate or high (but not low) intensity training protocols. In the second series of results, the magnitude of the freezing responses positively correlated with the hippocampal anandamide levels; TRPV1 and CB1R were found co-localized in this brain region; and the CB1R antagonist, AM251, prevented the effects of SB366791. Thus, endocannabinoid signaling possibly mediates the effects of TRPV1 blockers. Finally, inhibition of memory retrieval by TRPV1 blockers increased Arc and Zif268 mRNAs and impaired fear memory reinstatement. In conclusion, the modulation of fear memories by dorsal hippocampal TRPV1 channels may depend on the aversive stimulus intensity and occur via anandamide/CB1 signaling. Moreover, TRPV1 blockers promote Arc and Zif268 transcription, with subsequent attenuation of aversive memory reinstatement.
Asunto(s)
Endocannabinoides , Miedo , Ratones , Animales , Masculino , Endocannabinoides/farmacología , Ratones Endogámicos C57BL , Hipocampo , Receptor Cannabinoide CB1 , Canales Catiónicos TRPV/metabolismoRESUMEN
The non-classical histocompatibility antigen G (HLA-G) is an immune checkpoint molecule that has been implicated in viral disorders. We evaluated the plasma soluble HLA-G (sHLA-G) in 239 individuals, arranged in COVID-19 patients (n = 189) followed up at home or in a hospital, and in healthy controls (n = 50). Increased levels of sHLA-G were observed in COVID-19 patients irrespective of the facility care, gender, age, and the presence of comorbidities. Compared with controls, the sHLA-G levels increased as far as disease severity progressed; however, the levels decreased in critically ill patients, suggesting an immune exhaustion phenomenon. Notably, sHLA-G exhibited a positive correlation with other mediators currently observed in the acute phase of the disease, including IL-6, IL-8 and IL-10. Although sHLA-G levels may be associated with an acute biomarker of COVID-19, the increased levels alone were not associated with disease severity or mortality due to COVID-19. Whether the SARS-CoV-2 per se or the innate/adaptive immune response against the virus is responsible for the increased levels of sHLA-G are questions that need to be further addressed.
Asunto(s)
COVID-19 , Antígenos HLA-G , Antígenos de Histocompatibilidad Clase I , Humanos , Proteínas de Punto de Control Inmunitario , Plasma , SARS-CoV-2RESUMEN
Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1ß, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.
Asunto(s)
Acetilcolina , COVID-19 , Ácido Araquidónico , Ácidos Araquidónicos/farmacología , Ácidos Grasos , Glucocorticoides , Humanos , SARS-CoV-2RESUMEN
Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.
Asunto(s)
COVID-19 , Metaloproteinasa 2 de la Matriz , Antígenos HLA-G , Humanos , Inmunidad , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Estrés Oxidativo , SARS-CoV-2RESUMEN
Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.
Asunto(s)
Biomarcadores/sangre , COVID-19/diagnóstico , COVID-19/mortalidad , Leucocitos/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Índice de Severidad de la Enfermedad , Receptor Activador Expresado en Células Mieloides 1/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Brasil , Femenino , Humanos , Inflamación , Interleucina-10/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Estudios Prospectivos , SARS-CoV-2 , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Adulto JovenRESUMEN
Type 2 diabetes (T2D) is a metabolic disease characterized by increased inflammation, NOD-like receptors (NLRs) activation and gut dysbiosis. Our research group has recently reported that intestinal Th17 response limits gut dysbiosis and LPS translocation to visceral adipose tissue (VAT), protecting against metabolic syndrome. However, whether NOD2 receptor contributes intestinal Th17 immunity, modulates dysbiosis-driven metabolic tissue inflammation, and obesity-induced T2D remain poorly understood. In this context, we observed that mice lacking NOD2 fed a high-fat diet (HFD) display severe obesity, exhibit greater adiposity, and more hepatic steatosis compared to HFD-fed wild-type (WT) mice. In addition, they develop increased hyperglycemia, worsening of glucose intolerance, and insulin resistance. Notably, the deficiency of NOD2 causes a deviation from M2 macrophage and regulatory T cells (Treg) to M1 macrophage and mast cells into VAT compared to WT mice fed HFD. An imbalance was also observed in Th17/Th1 cell populations, with reduced IL-17 and IL-22 gene expression in the mesenteric lymph nodes (MLNs) and ileum, respectively, of NOD2-deficient mice fed HFD. 16S rRNA sequencing indicates lower richness, alpha diversity, and a depletion of Allobaculum, Lactobacillus, and enrichment with Bacteroides genera in these mice compared to HFD-fed WT mice. These alterations were associated with disrupted tight-junctions expression, augmented serum LPS, and bacterial translocation into VAT. Overall, NOD2 activation is required for a protective Th17 over Th1 immunity in the gut, which seems to decrease gram-negative bacteria outgrowth in gut microbiota, attenuating the endotoxemia, metainflammation, and protecting against obesity-induced T2D.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Proteína Adaptadora de Señalización NOD2/deficiencia , Animales , Biomarcadores , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/inmunología , Perfilación de la Expresión Génica , Glucosa/metabolismo , Inmunohistoquímica , Insulina/sangre , Insulina/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Islotes Pancreáticos/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Permeabilidad , Transducción de SeñalRESUMEN
Sound evidence supports a role for interleukin-17 (IL-17) -producing γδ T cells and IL-17-producing helper T (Th17) cells in intestinal homeostasis, especially in intestinal barrier integrity. In the present study, we aimed to evaluate the role of IL-17 cytokine in the regulation of intestinal immunity and obesity-induced metabolic syndrome (MetS) in an experimental murine model. C57BL/6 wild-type (WT) mice and mice lacking the IL-17 cytokine receptor (IL-17RA-/- ) were fed either a control diet (CD) or a high-fat diet (HFD) for 9 weeks. Our data demonstrate that IL-17RA-/- mice are protected against obesity, but develop hyperglycemia, hyperinsulinemia and insulin resistance. In parallel, HFD-fed IL-17RA-/- mice display intense inflammation in the ileum compared with WT mice on the HFD. IL-17RA-/- mice fed the HFD exhibit impaired neutrophil migration to the intestinal mucosa and reduced gene expression of the CXCL-1 chemokine and CXCR-2 receptor in the ileum. Interestingly, the populations of neutrophils (CD11b+ Ly6G+ ) and anti-inflammatory macrophages (CD11b+ CX3CR1+ ) are increased in the mesenteric lymph nodes of these mice. IL-17RA-/- mice on the HFD also display increased commensal bacterial translocation into the bloodstream and elevated lipopolysaccharide (LPS) levels in the visceral adipose tissue (VAT). Metagenomic analysis of bacterial 16S gene revealed increased Proteobacteria and Bacteroidetes phyla, the main representatives of Gram-negative bacteria, and reduced Akkermansia muciniphila in the fecal samples of IL-17RA-/- mice fed the HFD. Together, these data indicate that the IL-17/IL-17R axis drives intestinal neutrophil migration, limits gut dysbiosis and attenuates LPS translocation to VAT, resulting in protection to MetS.
Asunto(s)
Movimiento Celular , Dieta Alta en Grasa/efectos adversos , Disbiosis/inmunología , Interleucina-17/inmunología , Intestinos/inmunología , Lipopolisacáridos/metabolismo , Síndrome Metabólico/inmunología , Neutrófilos/inmunología , Receptores de Interleucina-17/inmunología , Animales , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Masculino , Síndrome Metabólico/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citologíaRESUMEN
We addressed the role of interleukin-23 (IL-23) in driving the intestinal T helper type 17 (Th17) response during obesity and metabolic syndrome progression induced by a high-fat diet (HFD). Diet-induced obese and lean mice received HFD or control diet (CTD), respectively, for 20 weeks. The nutritional, metabolic and immune parameters were examined at weeks 9 and 20. Gene and protein IL-23p19 and IL-23 receptor expression was increased in the ileum of obese wild-type mice (WT) fed the HFD for 9 weeks. Mice lacking IL-23 and fed the HFD exhibited greater weight gain, higher fat accumulation, adipocyte hypertrophy and hepatic steatosis. Notably, these mice had more glucose intolerance, insulin resistance and associated metabolic alterations, such as hyperinsulinaemia and hyperlipidaemia. IL-23 deficiency also significantly reduced protein levels of IL-17, CCL20 and neutrophil elastase in the ileum and reduced Th17 cell expansion in the mesenteric lymph nodes of the HFD mice. Of importance, IL-23-deficient mice exhibited increased gut permeability and blood bacterial translocation compared with WT mice fed HFD. Finally, metagenomics analysis of gut microbiota revealed a dramatic outgrowth of Bacteroidetes over Firmicutes phylum with the prevalence of Bacteroides genera in the faeces of IL-23-deficient mice after HFD. In summary, IL-23 appears to maintain the Th17 response and neutrophil migration into the intestinal mucosa, minimizing the gut dysbiosis and protecting against obesity and metabolic disease development in mice.