Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(28): eadk5846, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985866

RESUMEN

The current paradigm considers the control of the MOF/polymer interface mostly for achieving a good compatibility between the two components to ensure the fabrication of continuous mixed-matrix metal-organic framework (MMMOF) membranes. Here, we unravel that the interfacial pore shape nanostructure plays a key role for an optimum molecular transport. The prototypical ultrasmall pore AlFFIVE-1-Ni MOF was assembled with the polymer PIM-1 to design a composite with gradually expanding pore from the MOF entrance to the MOF/polymer interfacial region. Concentration gradient-driven molecular dynamics simulations demonstrated that this pore nanostructuring enables an optimum guided path for the gas molecules at the MOF/polymer interface that decisively leads to an acceleration of the molecular transport all along the MMMOF membrane. This numerical prediction resulted in the successful fabrication of a [001]-oriented nanosheets AlFFIVE-1-Ni/PIM-1 MMMOF membrane exhibiting an excellent CO2 permeability, better than many MMMs, and ideally associated with a sufficiently high CO2/CH4 selectivity that makes this membrane very promising for natural gas/biogas purification.

2.
Nanoscale ; 16(7): 3438-3447, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38265127

RESUMEN

Two-dimensional (2D) metal-organic frameworks (MOFs) hold immense potential for various applications due to their distinctive intrinsic properties compared to their 3D analogues. Herein, we designed a highly stable NiF2(pyrazine)2 2D MOF in silico with a two-dimensional periodic wine-rack architecture. Extensive first-principles calculations and molecular dynamics (MD) simulations based on a newly developed machine learning potential (MLP) revealed that this 2D MOF exhibits huge in-plane Poisson's ratio anisotropy. This results in anomalous negative in-plane stretchability, as evidenced by an uncommon decrease in its in-plane area upon the application of uniaxial tensile strain, which makes this 2D MOF particularly attractive for flexible wearable electronics and ultra-thin sensor applications. We further demonstrated the unique capability of MLP to accurately predict the finite-temperature properties of MOFs on a large scale, exemplified by MLP-MD simulations with a dimension of 28.2 × 28.2 nm2, relevant to the length scale experimentally attainable for the fabrication of MOF films.

3.
J Am Chem Soc ; 145(26): 14456-14465, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37350764

RESUMEN

Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.

4.
ACS Appl Mater Interfaces ; 14(14): 16820-16829, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35349279

RESUMEN

Mixed matrix membranes (MMMs) composed of NUS-8 metal-organic framework (MOF) nanosheets dispersed into a polymer of intrinsic microporosity 1 (PIM-1) polymer matrix are known to be promising candidates for CO2/N2 separation because of a solubility-driven separation mechanism. In this work, we predict that a chemical functionalization of the organic linker of NUS-8 by a CO2-philic function confers an even better separation performance to the resulting MMM. Our simulations revealed that the NUS-8-CO2H/PIM-1 composite exhibits a 3-fold increase in CO2/N2 selectivity versus the NUS-8/PIM-1 analogue while achieving a high CO2 permeability (6700 barrer). We demonstrated that this improved level of performance is due to an increase both in the total MOF/polymer interfacial pore volume and in the CO2-affinity due to the chemical functionalization. These results suggest that an appropriate choice of chemical functionalization of a MOF is a promising strategy to improve gas separation performances for MMM composites that exhibit a solubility-driven separation mechanism.

5.
ACS Appl Mater Interfaces ; 13(24): 29041-29047, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105948

RESUMEN

MOF-based mixed-matrix membranes (MMMs) prepared using standard routes often exhibit poor adhesion between polymers and MOFs. Herein, we report an unprecedented systematic exploration on polymer functionalization as the key to achieving defect-free MMMs. As a case study, we explored computationally MMMs based on the combination of the prototypical UiO-66(Zr) MOF with polymer of intrinsic porosity-1 (PIM-1) functionalized with various groups including amidoxime, tetrazole, and N-((2-ethanolamino)ethyl)carboxamide. Distinctly, the amidoxime-derivative PIM-1/UiO-66(Zr) MMM was predicted to express the desired enhanced MOF/polymer interfacial interactions and thus subsequently prepared and evaluated experimentally. Prominently, high-resolution transmission electron microscopy confirmed optimal adhesion between the two components in contrast to the nanometer-sized voids/defects shown by the pristine PIM-1/UiO-66(Zr) MMM. Notably, single-gas permeation measurements further corroborated the need of optimal MOF/polymer adhesion in order to effectively enable the MOF to play a role in the gas transport of the resulting MMM.

6.
Chem Mater ; 32(3): 1288-1296, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32296263

RESUMEN

Membrane-based separation technologies offer a cost-effective alternative to many energy-intensive gas separation processes, such as distillation. Mixed matrix membranes (MMMs) composed of polymers and metal-organic frameworks (MOFs) have attracted a great deal of attention for being promising systems to manufacture durable and highly selective membranes with high gas fluxes and high selectivities. Therefore, understanding gas transport through these MMMs is of significant importance. There has been longstanding speculation that the gas diffusion behavior at the interface formed between the polymer matrix and MOF particles would strongly affect the global performance of the MMMs due to the potential presence of nonselective voids or other defects. To shed more light on this paradigm, we have performed microsecond long concentration gradient-driven molecular dynamics (CGD-MD) simulations that deliver an unprecedented microscopic picture of the transport of H2 and CH4 as single components and as a mixture in all regions of the PIM-1/ZIF-8 membrane, including the polymer/MOF interface. The fluxes of the permeating gases are computed and the impact of the polymer/MOF interface on the H2/CH4 permselectivity of the composite membrane is clearly revealed. Specifically, we show that the poor compatibility between PIM-1 and ZIF-8, which manifests itself by the presence of nonselective void spaces at their interface, results in a decrease of the H2/CH4 permselectivity for the corresponding composite membrane as compared to the performances simulated for PIM-1 and ZIF-8 individually. We demonstrate that CGD-MD simulations based on an accurate atomistic description of the polymer/MOF composite is a powerful tool for characterization and understanding of gas transport and separation mechanisms in MMMs.

7.
Chem Sci ; 8(5): 3858-3865, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28966778

RESUMEN

In this study, we introduce a new non-equilibrium molecular dynamics simulation method to perform simulations of concentration driven membrane permeation processes. The methodology is based on the application of a non-conservative bias force controlling the concentration of species at the inlet and outlet of a membrane. We demonstrate our method for pure methane, ethane and ethylene permeation and for ethane/ethylene separation through a flexible ZIF-8 membrane. Results show that a stationary concentration gradient is maintained across the membrane, realistically simulating an out-of-equilibrium diffusive process, and the computed permeabilities and selectivity are in good agreement with experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA