Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(4): e0120123, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38456700

RESUMEN

Genomic features of Staphylococcus auricularis PAPLE_T1 isolated from waste sample of Carica papaya obtained from Lagos State, Nigeria, revealed its putative capability to synthesize valuable secondary metabolites. S. auricularis PAPLE_T1 has a 2.4 Mb genome and could be useful as biological agro-antibiotics, for soil bioremediation and in biotechnological industry.

2.
Microbiol Resour Announc ; 12(12): e0075323, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37909746

RESUMEN

Lysinibacillus fusiformis PwPw_T2 isolated from deteriorating Ananas comosus sample collected from Lagos State, Nigeria putatively possesses genomic features like potential enzymes catalyzing acetic acid production and xenobiotic compounds degradation via various pathways as indicated by its genome sequences. These could make the organism relevant in food waste valorization and micro-biotechnology.

3.
Sci Rep ; 11(1): 17496, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471151

RESUMEN

Drains from coal mines remain a worrisome point-source of toxic metal/metalloid pollutions to the surface- and ground-waters worldwide, requiring sustainable remediation strategies. Understanding the microbial community subtleties through microbiome and geochemical data can provide valuable information on the problem. Furthermore, the autochthonous microorganisms offer a potential means to remediate such contamination. The drains from Onyeama coal mine in Nigeria contained characteristic sulphates (313.0 ± 15.9 mg l-1), carbonate (253.0 ± 22.4 mg l-1), and nitrate (86.6 ± 41.0 mg l-1), having extreme tendencies to enrich receiving environments with extremely high pollution load index (3110 ± 942) for toxic metals/metalloid. The drains exerted severe degree of toxic metals/metalloid contamination (Degree of contamination: 3,400,000 ± 240,000) and consequent astronomically high ecological risks in the order: Lead > Cadmium > Arsenic > Nickel > Cobalt > Iron > Chromium. The microbiome of the drains revealed the dominance of Proteobacteria (50.8%) and Bacteroidetes (18.9%) among the bacterial community, whereas Ascomycota (60.8%) and Ciliophora (12.6%) dominated the eukaryotic community. A consortium of 7 autochthonous bacterial taxa exhibited excellent urease activities (≥ 253 µmol urea min-1) with subsequent stemming of acidic pH to > 8.2 and sequestration of toxic metals (approx. 100% efficiency) as precipitates (15.6 ± 0.92 mg ml-1). The drain is a point source for metals/metalloid pollution, and its bioremediation is achievable with the bacteria consortium.


Asunto(s)
Bacterias/clasificación , Minas de Carbón , Sedimentos Geológicos/análisis , Metales Pesados/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Sedimentos Geológicos/microbiología , Metales Pesados/análisis , Metales Pesados/toxicidad , Microbiota , ARN Ribosómico 16S/genética , Ureasa/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Environ Res ; 192: 110319, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069702

RESUMEN

Consistent discharges of hospital wastewaters (HWWs) pose ecological risk to the biome of the receiving environment with cumulative effect on its healthiness. Understanding the taxonomic profile of microorganisms in the impacted systems is required to establish taxa that are bio-indicators of toxicants, and provide possible taxa for mitigating ecotoxicity of the HWWs. Geochemistry, pollution status and ecotoxicity of heavy metals (HMs) in HWW-impacted sewer (LU) were assessed. The microbiome profiling was based on 16S rDNA and ITS of 18S rDNA metagenomes. The degree of HMs contamination exceeded 50 and HMs pollution load index of LU was severe (1,084), which consequently exerted severe risk (1,411,575 toxic response factors) with very high toxic responses of Co, Cu, Pb, and Cd. Eco-toxicological impact of the HMs on LU skewed microbiome towards Proteobacteria (43%), Actinobacteria (18%), and about 5% apiece for Chloroflexi, Acidobacteria, Plantomycetes, and Bacteroidetes. Likewise, the relative abundance of in LU inclined towards Ascomycota (59%), Basidiomycota (17%) and unclassified Eukarya_uc_p (16%). Exclusively found in LU sediments were 44,862 bacterial species and 42,881 fungi taxa, while 72,877 and 53,971 species of bacteria and fungi, respectively, were found missing. Extinction and emergence of bacteria and fungi taxa in LU were in response to HMs ecotoxicity and the need for natural attenuation processes respectively. The profiled taxa in LU may be plausible in bioremediation strategies of the impacted system, and in designing knowledge-based bioreactor system for the treatment of HWWs before discharge into the environment.


Asunto(s)
Metales Pesados , Aguas Residuales , Bacterias/genética , Monitoreo del Ambiente , Agua Dulce , Hongos/genética , Hospitales , Metales Pesados/análisis , Metales Pesados/toxicidad
5.
Ecotoxicol Environ Saf ; 207: 111319, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32947214

RESUMEN

Organochlorine pesticides (OCPs) used in agricultural practices are of global concern due to their toxicological hazards on biomes of the impacted soil. Geochemistry and microbiome of OCPs-impacted (OW) soil was determined and compared with those of pristine (L1) soils. Microbiome of OW was based on sequencing total 16S rRNA genes of prokaryotes and Internal Transcribed Spacer (ITS2) regions between 5.8S and 28S rRNA genes of eukaryotes using Illumina MiSeq platform for bacterial and fungal communities, respectively. Geochemical properties of OW were assessed for ecological risks of OCPs on biota via risk quotient (RQ) and maximum cumulative ratio (MCR). It was established OW was polluted with 15 OCPs, along with consequential nitrate and phosphorous deficiencies. Ten of the 15 OCPs exerted severe ecological risk (RQ > 1: 4-992), of which endosulfan contributed 76% of the ecotoxicity (MCR = 1.3) on OW. The key players in OW were observed to be Enterobacteriaceae and Mortierellaceae represented by Escherichia and Mortierella taxa, respectively. Low abundance of Nitrospirae species and extinction of Glomeromycota in OW connoted serious toxicological consequences of the OCPs. Taxon XOR (Taxon Exclusive Or) analysis revealed 38,212 and 63,474 counts of bacterial and fungal species, respectively, were exclusively found in the impacted OW and possibly contributed to natural attenuation of the OCPs in the impacted agricultural soil. Conversely, 61,005 (bacteria) and 33,397 (fungi) species counts that were missing in OCPs-impacted OW, but present in pristine L1, opined the species as bio-indicators of OCPs ecotoxicity in agricultural soils. While the species tagged as bio-indicators would be valuable in monitoring OCPs pollution, those suggested to be players in self-recovery process will be invaluable to designing bioremediation strategies for OCPs-impacted agricultural soil.


Asunto(s)
Monitoreo del Ambiente , Microbiota , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Agricultura , Bacterias , Biodegradación Ambiental , China , Endosulfano/análisis , Hidrocarburos Clorados/análisis , ARN Ribosómico 16S , Suelo/química
6.
J Hazard Mater ; 373: 243-249, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30921575

RESUMEN

Transformation of metallic mercury (Hg°) to mercuric ion (Hg2+) in hydrosphere is the entrance of mercury cycle in water environments and leads to toxicological impact of serious global concern. Two yeast strains of Yarrowia (Idd1 and Idd2) isolated from Hg-contaminated sediments were studied for their mediating role in Hg° dissolution and oxidation. Growth of the Yarrowia cells in Hg-free liquid medium, incubated for 5 d in closed air-tight systems containing Hg°, produced extracellular polymeric substances (EPS). Approximately 230 (±5.7) ng and 120 (±6.8) ng of the dissolved Hg° were oxidized to Hg2+ by the cultures of Idd1 and Idd2, respectively, 5 day post-inoculation. Transmission electron microscopy (TEM) and X-ray energy dispersive spectrophotometry (XEDS) analysis of the EPS and cell mass revealed the presence of extracellular Hg nanoparticles, presumably HgS, as an indication of EPS-Hg complexation that is useful for Hg° dissolution and its eventual oxidation to Hg2+ by the cells. Fourier transmission infra-red (FTIR) analyses of the EPS and cell-mass during Hg-oxidation revealed that amine and carbonyl groups were used by EPS for Hg complexation. Our findings provided information about mediatory role played by Yarrowia (Idd1 and Idd2) in hydrosphere in biogeochemical cycling of Hg.


Asunto(s)
Mercurio/metabolismo , Yarrowia/metabolismo , Oxidación-Reducción , Ciclo Hidrológico , Yarrowia/crecimiento & desarrollo
7.
AMB Express ; 6(1): 99, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27739052

RESUMEN

Ecotoxicological implications of mercury (Hg) pollution of hydrosphere require effective Hg-removal strategies as antidote to the environmental problems. Mercury-tolerant yeasts, Yarrowia spp. Idd1 and Idd2 strains, were studied for intracellular accumulation and extracellular micro-precipitation of Hg during growth stage of the yeast strains. In a liquid medium containing 870 (±23.6) µg of bioavailable Hg2+, 419.0 µg Hg2+ (approx.) was taken up by the wet biomasses of the yeast strains after 48 h post-inoculation. Large portion of the adsorbed Hg was found in cell wall (approx. 49-83 %) and spheroplast (approx. 62-89 %). Negligible quantities of Hg were present in the mitochondria (0.02-0.02 %), and appreciable amount of Hg was observed in nuclei and cell debris (15.2-65.3 %) as evidence of bioaccumulation. Extracellular polymeric substances (EPS) produced by the growing Yarrowia cells was a complex of protein, carbohydrates and other substances, immobilizing 43.8 (±0.7)-58.7 (±1.0) % of initial Hg in medium as micro-precipitates, while 10.13 ± 0.4-39.2 ± 4.3 % Hg content was volatilized. Transmission electron microscopy coupled with X-ray energy dispersive spectrophotometry confirmed the cellular removal of Hg and formation of EPS-Hg complex colloids in the surrounding bulk solution as micro-precipitates in form of extracellular Hg-nanoparticles. Hg mass balance in the bio-sequestration experiment revealed excellent Hg removal (>97 %) from the medium (containing ≤16 µg ml-1 Hg2+) by the yeast strains via bioaccumulation, volatilization and micro-precipitation. The yeast strains are also effectively applicable in biological purification technology for Hg contaminated water because of their high self-aggregation activity and separatability from the aquatic environments. Graphical abstract Yarrowia species are oligotrophic marine yeasts that exhibited great potentials for mercuric ion remediation technologies, which are classified into four categories based on the process acting on the metal. These include immobilization through biosorption, compartmentation via bioaccumulation, separation from bulk solution via micro-precipitation upon EPS-Hg complex formation, and destruction that is a process to reduce the mercuric ion to metallic mercury.

8.
J Biosci Bioeng ; 122(6): 701-707, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27405269

RESUMEN

Exopolymeric substances (EPS) produced by highly mercury-resistant strains of the yeast Yarrowia spp. (Idd1 and Idd2) were isolated and studied for their mercury binding potential. Excellent yield (approximately 0.3 g EPS per gram biomass) of soluble EPS in medium with 3% glucose was observed in the Yarrowia cultures 7 day post-inoculation. A gram dry weight of the EPS consists mainly of carbohydrates (0.4 g), protein (0.3-0.4 g), uronic acid (0.02 g), and nucleic acids (0.002 g). Mercury interactions with the biopolymer were measured as uptake kinetics from a simulated aquatic system and modelled with thermodynamics and calculated mass action equilibria. The EPS forms a complex with Hg2+ in water with small activation energy (≤2 kJ mol-1), achieving about 30 mg Hg2+ adsorption per gram dry weight of EPS. The adsorption models confirmed complexation of Hg2+ by the EPS via heterogeneous multilayer adsorption that obey second-order kinetics at constant rate of 4.0 and 8.1 mg g-1 min-1. The EPS used chemisorption as rate-limiting step that controls the uptake of Hg2+ from aquatic systems during micro-precipitation as bio-removal strategy. The EPS are promising biotechnological tools to design bioreactors for treatment of mercury-rich industrial wastewater.


Asunto(s)
Reactores Biológicos , Mercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Yarrowia/metabolismo , Adsorción , Biopolímeros/metabolismo , Cinética , Termodinámica , Yarrowia/química
9.
Environ Monit Assess ; 187(8): 525, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26209420

RESUMEN

Metal uptake potentials of Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia CA96Co, Rhodococcus sp. AL03Ni, and Corynebacterium kutscheri FL108Hg were studied to determine their competence in detoxification of toxic metals during growth. Metabolism-dependent metal biouptake of the bacteria revealed appreciable uptake of the metals (57-61, 10-30, 23-60, and 10-16 mg g dw(-1) of Ni(2+), Cr(6+), Co(2+), and Cd(2+), respectively) from medium, after initial drop in pH, without lag phase. The bacteria exhibited 95-100% removal efficiency for the metals from aqueous medium as 21 (±0.8)-84 (±2.0) concentration factors of the metals were transported into the bacterial systems. Passive adsorption onto the cell surfaces occurred within 2-h contact, and afterwards, there was continuous accumulation for 12 days. Biosorption data of the bacteria were only fitted into Langmuir isotherm model when strains AL96Co, CA207Ni, and AL03Ni interacted with Ni(2+), achieving maximum uptake of 9.87, 2.72, and 2.69 mg g dw(-1), respectively. This study established that the actively growing bacterial strains displayed, at least, 97.0% (±1.5) continuous active removals of metals upon adsorption. The bacteria would be good candidates for designing bioreactor useful in the detoxification campaign of heavy metal-polluted systems.


Asunto(s)
Bacterias/metabolismo , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismo , Adsorción , Bacterias/química , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Metales Pesados/química , Contaminantes Químicos del Agua/química
10.
Appl Microbiol Biotechnol ; 99(8): 3651-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25520168

RESUMEN

Difference in mercuric ion removal by resting and growing cells of two mercury-resistant yeast strains, identified as Yarrowia spp. (strains Idd1 and Idd2), were studied. Resting cells of strain Idd2 exhibited high maximum Hg(2+) removal capacity (59 mg mercury per g dry cell weight [gdw(-1)]) by adsorption than those of resting cells of strain Idd1 (32 mg gdw(-1)). The resting cells of strain Idd2 exhibited a higher Hg(2+) desorption capacity using CaCl2 (68 %) and EDTA (48 %) than strain Idd1, depicting weaker binding of Hg(2+) onto strain Idd2 unlike strain Idd1. The actively growing yeast cells showed opposite Hg removal characteristics to those of the resting cells. Strain Idd1 adsorbed less Hg(2+) from culture medium supplemented with Hg(2+) than strain Idd2. However, the growing strain Idd1 reduced and vaporized 27 % of supplemented Hg(2+) as metallic mercury (Hg(0)), while the growing strains Idd2 vaporized 15 % of the supplemented Hg(2+). These two yeast strains are potential biotechnological tools for the eventual bioremediation of polluted aquatic systems.


Asunto(s)
Sedimentos Geológicos/microbiología , Mercurio/metabolismo , Contaminantes del Agua/metabolismo , Yarrowia/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Estuarios , Genes de ARNr , Datos de Secuencia Molecular , Oxidación-Reducción , ARN de Hongos/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Yarrowia/clasificación , Yarrowia/genética , Yarrowia/aislamiento & purificación
11.
J Basic Microbiol ; 53(11): 917-27, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23457074

RESUMEN

Bioremediation of environments co-contaminated with hydrocarbons and heavy metals often pose a challenge as heavy metals exert toxicity to existing communities of hydrocarbon degraders. Multi-resistant bacterial strains were studied for ability to degrade hydrocarbons in chemically defined media amended with 5.0 mM Ni(2+), and Co(2+). The bacteria, Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia AL96Co, and Corynebacterium kutscheri FL108Hg, utilized crude oil and anthracene without lag phase at specific growth rate spanning 0.3848-0.8259 per day. The bacterial populations grew in hydrocarbon media amended with nickel (Ni) and cobalt (Co) at 0.8393-1.801 days generation time (period of exponential growth, t = 15 days). The bacteria degraded 96.24-98.97, and 92.94-96.24% of crude oil, and anthracene, respectively, within 30 days without any impedance due to metal toxicity (at 5.0 mM). Rather, there was reduction of Ni and Co concentrations in the axenic culture 30 days post-inoculation to 0.08-0.12 and 0.11-0.15 mM, respectively. The metabolic functions of the bacteria are active in the presence of toxic metals (Ni and Co) while utilizing petroleum hydrocarbons for increase in biomass. These findings are useful to other baseline studies on decommissioning of sites co-contaminated with hydrocarbons and toxic metals.


Asunto(s)
Burkholderia cepacia/metabolismo , Cobalto/metabolismo , Corynebacterium/metabolismo , Hidrocarburos/metabolismo , Metales Pesados/metabolismo , Níquel/metabolismo , Pseudomonas aeruginosa/metabolismo , Antracenos/metabolismo , Antibacterianos/toxicidad , Biotransformación , Burkholderia cepacia/efectos de los fármacos , Burkholderia cepacia/crecimiento & desarrollo , Cobalto/toxicidad , Corynebacterium/efectos de los fármacos , Corynebacterium/crecimiento & desarrollo , Medios de Cultivo/química , Farmacorresistencia Bacteriana , Metales Pesados/toxicidad , Níquel/toxicidad , Petróleo/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo
12.
Environ Monit Assess ; 185(8): 6809-18, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23315153

RESUMEN

Chromium (VI) [Cr (VI)] biosorption by four resistant autochthonous bacterial strains was investigated to determine their potential for use in sustainable marine water-pollution control. Maximum exchange between Cr (VI) ions and protons on the cells surfaces were at 30-35 °C, pH 2.0 and 350-450 mg/L. The bacterial strains effectively removed 79.0-90.5 % Cr (VI) ions from solution. Furthermore, 85.3-93.0 % of Cr (VI) ions were regenerated from the biomasses, and 83.4-91.7 % of the metal was adsorbed when the biomasses was reused. Langmuir isotherm performed better than Freundlich isotherm, depicting that Cr (VI) affinity was in the sequence Rhodococcus sp. AL03Ni > Burkholderia cepacia AL96Co > Corynebacterium kutscheri FL108Hg > Pseudomonas aeruginosa CA207Ni. Biosorption isotherms confirmed that Rhodococcus sp. AL03Ni was a better biosorbent with a maximum uptake of 107.46 mg of Cr (VI) per g (dry weight) of biomass. The results highlight the high potential of the organisms for bacteria-based detoxification of Cr (VI) via biosorption.


Asunto(s)
Bacterias/metabolismo , Cromo/metabolismo , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua/metabolismo , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Cromo/análisis , Industrias , Aguas del Alcantarillado/análisis , Aguas Residuales/química , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA