Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geophys Res Lett ; 40(23): 6033-6037, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26074632

RESUMEN

[1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL.

2.
Geophys Res Lett ; 40(21): 5605-5609, 2013 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-25821261

RESUMEN

[1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of 36Ar/38Ar = 4.2 ± 0.1 is highly significant for it provides excellent evidence that "Mars" meteorites are indeed of Martian origin, and it points to a significant loss of argon of at least 50% and perhaps as high as 85-95% from the atmosphere of Mars in the past 4 billion years. Taken together with the isotopic fractionations in N, C, H, and O measured by SAM, these results imply a substantial loss of atmosphere from Mars in the posthydrodynamic escape phase.

3.
Faraday Discuss ; 133: 387-91; discussion 427-52, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17191458

RESUMEN

The atmosphere of Titan represents a bridge between the early solar nebula and atmospheres like ours. The low abundances of primordial noble gases in Titan's atmosphere relative to N2 suggest that the icy planetesimals that formed the satellite must have originated at temperatures higher than 75-100 K. Under these conditions, N2 would also be very poorly trapped and thus Titan's nitrogen, like ours, must have arrived as nitrogen compounds, of which ammonia was likely the major component. This temperature constraint also argues against the trapping of methane. Production of this gas on the satellite after formation appears reasonable based on terrestrial examples of serpentinization, disproportionation and reduction of carbon. These processes require rocks, water, suitable catalysts and the variety of primordial carbon compounds that were plausibly trapped in Titan's ices. Application of this same general scenario to Ganymede, Callisto, KBOs and conditions on the very early Earth seems promising.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA