Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37103847

RESUMEN

Different commercial reverse osmosis (RO) membranes from Vontron and DuPont Filmtec were evaluated for textile dyeing and finishing wastewater (TDFW) reuse in China. All six tested RO membranes produced qualified permeate meeting TDFW reuse standards at a water recovery ratio (WRR) of 70% in single batch tests. The rapid decline of apparent specific flux at WRR over 50% was mainly ascribed to feed osmotic pressure increase caused by concentrating effects. Multiple batch tests using Vontron HOR and DuPont Filmtec BW RO membranes with comparable permeability and selectivity demonstrated the reproducibility and showed low fouling development. The occurrence of carbonate scaling on both RO membranes was identified by scanning electron microscopy and energy disperse spectroscopy. No obvious organic fouling was detected on both RO membranes by attenuated total reflectance Fourier transform infrared spectrometry. From the orthogonal tests, with an integrated RO membrane performance index (i.e., 25% rejection ratio of total organic carbon + 25% rejection ratio of conductivity + 50% flux ratio of final to initial) as a target, the optimal parameters were determined as WRR of 60%, cross-flow velocity (CFV) of 1.0 m/s, temperature (T) of 20 °C for both RO membranes, while trans-membrane pressures (TMP) of 2 and 4 MPa were optimal for Vontron HOR RO membrane and DuPont Filmtec BW RO membrane, respectively. Both RO membranes with the optimal parameters produced good permeate quality for TDFW reuse and kept a high flux ratio of final to initial, demonstrating the effectiveness of the orthogonal tests.

2.
Membranes (Basel) ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36005725

RESUMEN

It is of great importance to quantitatively characterize feed fouling potential for the effective and efficient prevention and control of reverse osmosis membrane fouling. A gradient filtration method with microfiltration (MF 0.45 µm) → ultrafiltration (UF 100 kDa) → nanofiltration (NF 300 Da) was proposed to extract the cake layer fouling index, I, of different feed foulants in this study. MF, UF, and NF showed high rejection of model suspended solids (kaolin), colloids (sodium alginate and bovine serum albumin), and dissolved organic matters (humic acid) during constant-pressure individual filtration tests, where the cake layer was the dominant fouling mechanism, with I showing a good linear positive correlation with the foulant concentration. MF → UF → NF gradient filtration tests of synthetic wastewater (i.e., model mixture) showed that combined models were more effective than single models to analyze membrane fouling mechanisms. For each membrane of gradient filtration, I showed a positive correlation with the targeted foulant concentration. Therefore, a quantitative assessment method based on MF → UF → NF gradient filtration, the correlation of combined fouling models, and the calculation of I would be useful for characterizing the fouling potentials of different foulants. This method was further successfully applied for characterizing the fouling potential of real wastewater (i.e., sludge supernatant from a membrane bioreactor treating dyeing and finishing wastewater).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA